Reg. No.

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Seventh Semester

Branch: Electrical and Electronics Engineering

EE 010 704—MODERN CONTROL THEORY (EE)

(New Scheme-2010 admission onwards)

[Regular/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Define Controllability.
- 2. Comment on the stability of limit cycle.
- 3. Compare describing function analysis with phase plane analysis.
- 4. Comment on first order hold circuits. What is its transfer function?
- 5. State the difference between Microprocessors and Micro controllers.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain the design of a full order observer.
- 7. Define singular points. How is it classified?
- 8. State Popov's criterion.
- 9. Explain stability using Schurcohn method.
- 10. What is a programmable logic controller?

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Part C

Answer all questions.

Each question carries 12 marks.

11. Design a state feedback controller to place the poles at -10, -10 for the system represented as:

$$\mathbf{X} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \quad \mathbf{Y} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} x_i \\ x_2 \end{bmatrix}.$$

O

- 12. Consider a system $\dot{X} = AX + Bu$ Y = CX where $A = \begin{bmatrix} 0 & 20.6 \\ 1 & 0 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 0 & 1 \end{bmatrix}$. Design a full order observer. Desired eigen values of observer matrix are $\mu_1 = -1.8 + j \ 2.4$, $\mu_2 = -1.8 j \ 2.4$.
- 13. A linear second order servo is described by the equation $\ddot{\mathbf{Y}} + 2 \xi w_n \dot{\mathbf{Y}} + w_n^2 \mathbf{Y} w_n^2$ where $\xi = 0.15$, $w_n = 1 \text{rad/sec Y}(0) = 1.5$, $\dot{\mathbf{Y}}(0) = 0$. Determine singular points. Construct phase trajectory using method of isoclines.

Or

14. Obtain the phase plane portrait of the non-linear system given as:

$$\ddot{X} + \left| \dot{X} \right| + X = 0.$$

15. Derive the describing function of dead zone and saturation non-linearity.

Or

16. Consider a unity feedback system having a saturation non-linearity with gain K. Determine the maximum value of K for the system to stay stable.

- 17. (a) Solve the inverse z-transform of $\frac{4z^2 2z}{z^3 5x^2 + 8z 4}$.
 - (b) Solve the difference equation:

$$x(k+2)-3x(k+1)+2x(k)=4^k x(0)=0 x(1)=1$$
.

Or

18. Sampled data control system of order one with transportation log is shown in figure. Determine the condition for system stability if $\delta < T\,.$

19. Explain different control hirarchies for plant level automation.

O

20. Explain DSP based control with suitable example.

 $(5 \times 12 = 60 \text{ marks})$

