

(Pages: 2)

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Seventh Semester

Branch: Electrical and Electronics Engineering

EE 010 703—DRIVES AND CONTROL (EE)

(Improvement/Supplementary)

[2010 Admissions]

Maximum: 100 Marks

Time : Three Hours

Part A

Answer all questions briefly. Each question carries 3 marks.

- Discuss about the classifications of load torque.
- 2. Draw the speed torque characteristics of a single-phase half controlled rectifier fed separately excited motor.
- 3. What are the features of variable frequency control?
- 4. What is meant by slip power recovery scheme?
- 5. What are the limitations of 25 kV AC traction using transformer with tap changer.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions. Each question carries 5 marks.

- 6. What are the components of load torque?
- 7. Explain about the speed reversal carried out in the non-simultaneous control method of dual converter fed drive.
- 8. A three-phase 440 V, 1000 r.p.m. slip ring induction motor is operating with 4 % slip. Stator current is 30 A. Calculate the stator current if the speed of the motor is reduced to 500 r.p.m. using stator voltage control method.
- 9. Explain the dynamic braking of CSI fed drive.
- Explain the principle of synchronous motor control.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

11. (a) Derive the equivalent values of drive parameters for a load undergoing rotational and translational motion.

(8 marks)

(b) Derive the expression for fundamental torque.

(4 marks)

Or

- 12. With neat circuit diagram and relevant waveforms, explain the operation of single-phase half wave controlled rectifier fed d.c. separately excited motor.
- 13. With neat circuit diagram and relevant waveforms explain the operation of three-phase half controlled bridge rectifier fed d.c. motor drive.

Or

- 14. Explain the operation of chopper control of d.c. series motor.
- 15. Explain in detail about stator voltage control of induction motor drive.

 O_{I}

- 16. Explain in detail about the v/f control of induction motor drives.
- 17. (a) Discuss the principle of vector control.

(6 marks)

(b) Briefly discuss about the slip speed control.

(6 marks)

Or

- 18. A 440 V, 50 Hz, 970 r.p.m., 6 pole, Y-connected 3-phase wound rotor induction motor has following parameters referred to the stator. $R_S = 0.1 \,\Omega$, $R_r' = 0.08 \,\Omega$, $X_S = 0.3 \,\Omega$, $X_r' = 0.4 \,\Omega$. The stator to rotor turns ratio is 2. Motor speed is controlled by static Scherbius drive. Drive is designed for a speed range of 25% below the synchronous speed. Maximum value of firing angle is 165°. Calculate:
 - (a) Transformer turns ratio.
 - (b) Torque for a speed of 780 r.p.m. and $\alpha = 140^{\circ}$.
 - (c) Firing angle for half the rated motor torque and speed of 800 r.p.m..

The d.c. link inductor has a resistance of 0.01 Ω .

19. Explain AC traction using PWM VSI squirrel cage induction motor drive.

Or

20. Explain in detail about the operation of VSI fed synchronous motor drive.

 $[5 \times 12 = 60 \text{ marks}]$