Name....

# B.TECH. DEGREE EXAMINATION, MAY 2014

### Seventh Semester

Branch: Applied Electronics and Instrumentation Engineering / Electronics and Instrumentation / Electronics and Communication Engineering

AI 010 706 L03 / EC 010 706 L01 / EI 010 706 L01—OPTIMIZATION TECHNIQUES (AI, EC, EI)

(2010 Admissions)

[Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

## Part A

Answer all questions.
Each question carries 3 marks.

- 1. Explain different one dimensional minimization methods.
- 2. Mention certain areas where requirement of linear programming lanes.
- 3. What is the slope of post optimality analysis.
- 4. Define forecasting models.
- 5. Explain briefly single server models.

 $(5 \times 3 = 15 \text{ marks})$ 

#### Part B

Answer all questions.

Each question carries 5 marks.

- 6. Find the maxima and minima, if any, if the function  $f(x) = 4x^3 18x^2 + 27x 7$ .
- 7. Solve the following LP problem graphically

$$Minimize f = -3x_1 + 2x_2$$

subject to 
$$0 \le x_1 \le 4$$

$$1 \le x_2 \le 6$$

$$x_1 + x_2 \le 5$$



8. Six jobs are to be processed on two machines A and B. Time in hours taken by each job on each machine is given below:

|                    | JOBS |   |   |    |    |   |  |
|--------------------|------|---|---|----|----|---|--|
| STOWN E PARCE . T. | 1    | 2 | 3 | 4  | 5  | 6 |  |
| Machine A          | 5    | 3 | 2 | 10 | 12 | 6 |  |
| Machine B          | 3    | 2 | 5 | 11 | 10 | 7 |  |

Determine the optimum sequence of jobs that minimizes the total elapsed time to complete the jobs. Compute the minimum time.

9. Solve the following pay-off matrix for optimal strategies and the value of the game :

$$\begin{bmatrix} & Y \\ X \begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}.$$

10. Explain the various states in queueing system.

 $(5 \times 5 = 25 \text{ marks})$ 

## Part C

Answer all questions.
Each question carries 12 marks.

11. (a) Minimize  $f = 2x_1^2 + x_2^2$  by using the steepest descent method starting from (1, 2).

Or

- (b) Find the minimum of f = x(x-1.5) by starting from 0.0 with an initial step size of 0.05.
- 12. (a) Solve the following LP problem graphically:

Maximize 
$$f = x_1 + x_2$$

subject to 
$$-x_1 + x_2 \le 2$$

$$2x_1+x_2\leq 4$$

$$x_1,x_2\geq 0.$$

(b) Use dual simplex method to solve the LPP.

Minimize 
$$Z = -3x_1 - 2x_2$$

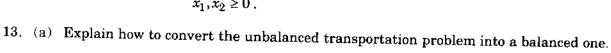
subject to 
$$x_1 - x_2 \ge 2$$

$$x_1 + x_2 \le 14$$

$$x_1+2\geq 20$$

$$x_2 \le 6$$

$$x_1,x_2\geq 0\;.$$



Or

(b) Using VAM solve the following problem:

|                | $W_1$ | $W_2$ | $\mathbf{W}_3$ | $W_4$ | $\mathbf{W}_5$ | Available |
|----------------|-------|-------|----------------|-------|----------------|-----------|
| $\mathbf{F}_1$ | 3     | 4     | 6              | 8     | 9              |           |
| $\mathbf{F_2}$ | 2     | 10    | 1              | 5     | 8              |           |
| $\mathbf{F_3}$ | 7     | 11    | 20             | 40    | 3              |           |
| $\mathbf{F_4}$ | 2     | 1     | 9              | 14    | 16             |           |
| Required       | 40    | 6     | 8              | 18    | 6              |           |

14. (a) Solve the following game problem using the principle of dominance:

$$\begin{array}{ccc} & & Player \ Y \\ Player \ X \begin{bmatrix} 1 & 7 & 2 \\ 6 & 2 & 7 \\ 5 & 1 & 6 \end{bmatrix}. \end{array}$$

G 742

(b) Solve graphically:

$$\begin{array}{c|c} & Player \ Y \\ Player \ X \begin{bmatrix} 1 & 3 & 11 \\ 8 & 5 & 2 \end{bmatrix}$$



15. (a) Explain the elements of a queuing model.

0r

(b) A barber shop has two barbers and 3 chairs for customers. The customers are assumed to arrive in Poisson fashion at a rate of 5 per hour. Each barber services according to an exponential distribution with a mean 15 minutes. Further if a customer arrives and there are no empty chairs in the shop, he will leave. Compute the expected number of customers in the shop.

 $(5 \times 12 = 60 \text{ marks})$