S				
G	-16	-4	-16	60
	-	-	-	10
W W	-	- 1	-	ų p
	-	and the	-	-

(Pages: 2)

Reg.	No
Nam	e

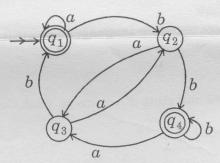
B.TECH. DEGREE EXAMINATION, MAY 2016

Seventh Semester

Branch: Computer Science and Engineering

THEORY OF COMPUTATION (R)

(Old Scheme-Prior to 2010 Admissions)


[Supplementary/Mercy Chance]

Time: Three Hours

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Differentiate primitive recursive and partial recursive functions.
- 2. Give the formal representation of languages.
- 3. Given the following state diagram of DFA:

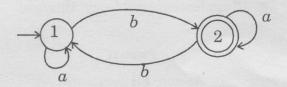
Identify:

- (i) Start state and set of accept states.
- (ii) Sequence of states that the machine go through on input aabb.
- 4. Prove that every NFA can be converted to an equivalent one that has a single accept state.
- 5. Define ambiguity. Give a grammar that is ambiguous and specify the ambiguity.
- 6. State the formal definition of a push-down automaton.
- 7. Define Turing machine.
- 8. State Hilbert's problem. How is it solved?
- 9. What are tractable problems? Give example.
- 10. Differentiate polynomial time algorithms and exponential time algorithms.

LIBRARY

Maximum: 100 Marks

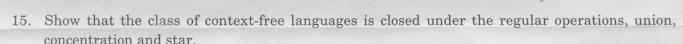
 $(10 \times 4 = 40 \text{ marks})$


Part B

Answer all questions.
Each full question carries 12 marks.

11. Define sets. Explain the properties of set in detail.

Or


- 12. Elaborate Chomsky classification in detail.
- 13. Convert the following finite automata into regular expressions. Explain the procedure.

Or

14. Use pumping lemma to show that the following is not regular:

 $\mathbf{A} = \left\{ www \mid w \in \left\{ a, b \right\}^* \right\}.$

Or

16. Give informal descriptions and state diagrams of push-down automata for the language:

 $\{w \mid \text{the length of } w \text{ is odd}\}$

In all parts of the alphabet Σ is $\{0,1\}$.

17. What are multiple turing machines? Prove that "every multi-tape turing machine has an equivalent single-tape turing machine".

Or

- 18. Define Church-Turing thesis. Elaborate the algorithm and the problem it resolves.
- 19. Discuss the clique problem. Prove that "CUQUE is in NP".

Or

20. Explain satisfiability problem and Cook-Levin theorem.

 $(5 \times 12 = 60 \text{ marks})$