\sim	-	_	4	_
		_	4	=
		- 1	4	-
~		5	-1	u

(Pages	:	4)
--------	---	----

Reg. No	•••••••
Name	

B.TECH. DEGREE EXAMINATION, MAY 2016

Fourth Semester

Branch: Electrical and Electronics Engineering

EE 010 403—LINEAR SYSTEM ANALYSIS (EE)

(New Scheme-2010 Admission onwards)

[Regular/Improvement/Supplementary]

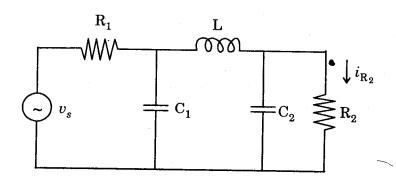
Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. Distinguish between continuous time and discrete time systems.
- 2. What is Mason's Gain formula?
- 3. What are the different standard test inputs?
- 4. Define negative definiteness of a function.
- 5. Define transmission parameters.



 $(5 \times 3 = 15 \text{ marks})$

Part B

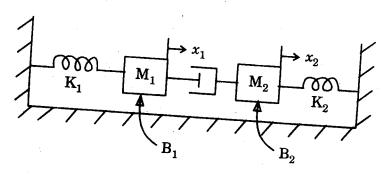
Answer all questions.
Each question carries 5 marks.


6. Obtain the transfer function of the electrical network:

7. Write the state space representation of a linear time invariant system.

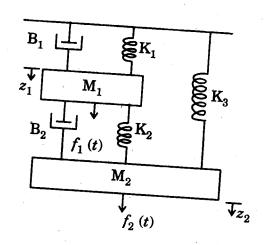
Turn over

- 8. A unity feedback control system has an open loop transfer function $G(s) = \frac{1}{s}$ time, % overshoot, peak time, time delay and settling time for a step input of 12 units.
- 9. Discuss the effect of location of poles on stability.
- 10. Discuss about driving point functions.

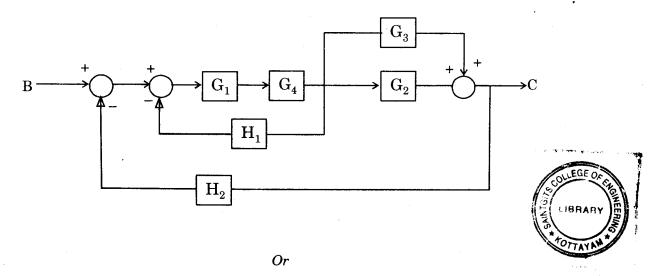


 $(5 \times 5 = 25 \text{ marks})$

Part C

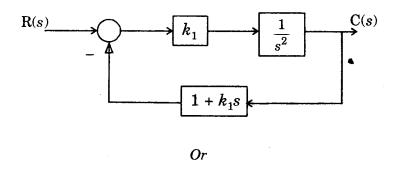

Answer all questions. Each full question carries 12 marks.

11. Write the performance equation for the system shown in figure. Find the transfer function $\frac{X_2(s)}{F(s)}$.



Or

12. Write the equations of motions for the mechanical system:


13. From the block diagram, determine the relationship between R and C by successive block reduction.

14. Construct a signal flow graph representing the following system of equations:

$$\begin{aligned} \mathbf{X}_2 &= a_{12} \ \mathbf{X}_1 + a_{22} \ \mathbf{X}_2 + a_{42} \ \mathbf{X}_4 \\ \mathbf{X}_3 &= a_{13} \ \mathbf{X}_1 + a_{23} \ \mathbf{X}_2 + a_{43} \ \mathbf{X}_4 \\ \mathbf{X}_4 &= a_{34} \ \mathbf{X}_3 \\ \mathbf{X}_5 &= a_{35} \ \mathbf{X}_3 + a_{45} \ \mathbf{X}_4 \end{aligned}$$

15. For the control system shown in Fig. find the values of K_1 and K_2 so that M_p = 25% and T_p = 4s. Assume unit step input :

16. Determine the type and order of the unity feedback control system whose open loop transfer functions are:

(a)
$$G(s) = \frac{K(1+2s)(1+4s)}{s^2(s^2+2s+10)}$$
.

(b)
$$G(s) = \frac{K}{s^2(s^2 + 4s + 200)}$$
.

Find also static error coefficients and the errors for unit step and unit ramp inputs.

17. Examine the stability of the system having characteristic equation:

$$3s^4 + 10s^3 + 5s^2 + 5s + 3 = 0$$
 using Routh's criterion.

Or

18. A feedback system has an open loop transfer function:

$$G(s) H(s) = \frac{Ke^{-s}}{s(s^2 + 2s + 1)}.$$

Determine by the use of Routh stability criterion the maximum value of K for the closed loop system to be stable.

- 19. Write short notes on:
 - (a) Impedance converter.
 - (b) Gyrator.
 - (c) Ideal transformers.

Or

- 20. Write short notes on:
 - (a) Negative Impedance converter.
 - (b) Impedance, admittance, hybrid and transmission parameters.

 $(5 \times 12 = 60 \text{ marks})$