Course code	Course Name L-T- Cred		ear of oduction				
CH367	NUMERICAL METHODS FOR PROCESS ENGINEERS 3-0-0)-3	2016				
Prerequisi	te : Nil						
Course Of To To prof Syllabus Errors in m - iteration Direct met method for differentiat problems for Solution to Expected (ojectives impart the basic concepts of numerical analysis develop understanding about numerical techniques for solution of blems umerical calculations. Numerical solution of polynomial and tran based on second degree equation-Solution of system of linear hods, Solution of system of nonlinear equations by Newton-Rap for the determination of Eigen values-Polynomial interp ion, Numerical integration. Numerical solution of ordinary different for ODE). Solution of boundary value problems in ordinary different PDE's	scendental algebraic e hson metho olation- N ential equat	equations equations. od, Power Jumerical ions (IVP				
i. ii. iii. iv. v.	Understand basic concepts of error, convergence etc.in numeric Choose and apply appropriate numerical schemes to solve v engineering problems. Solve system of equations using different numerical methods Use suitable interpolation methods to deal with the data in hand. Understand and use various numerical schemes used for solvi BVP) and PDE.	arious che					
Tho 2. Fro 3. Ger 4. Hild 5. Jan Cor	y K. Ray, Mathematical Methods in Chemical & Environmental Homson-Learning berg C.E., Introduction to Numerical Analysis, Addison Wesley ald C.F., Applied Numerical Analysis, Addison Wesley debrand F.B., Introduction to Numerical Analysis, T.M.H. nes M.L., Smith C.M. & Wolford J.C., Applied Numerical Method nputation, Harper & Row thew J.H., Numerical Methods for Mathematics, Science and Eng	ls for Digita	ıl				
Course Plan							
Module	Contents	Hours	Sem. Exam Marks				
Ι	Errors in numerical calculations, Sources of errors, significant digits and numerical instability - numerical solution of polynomial and transcendental equations - bisection method method of false position - Newton-Raphson method - fixed-point iteration - rate of convergence of these methods - iteration base on second degree equation - the Muller's method - Chebyshe method - Graeffe's root squaring method for polynomia equations - Bairstow's method for quadratic factors in the case of polynomial equations	of - nt d 7 v nl	15%				

Π	Solutions of system of linear algebraic equations. Direct methods - gauss and gauss - Jordan methods - Crout's reduction method - error analysis - iterative methods - Jacobi's iteration - Gauss- seidel iteration - the relaxation method - convergence analysis - solution of system of nonlinear equations by Newton-Raphson method - power method for the determination of Eigen values - convergence of power method		7	15%		
FIRST INTERNAL EXAMINATION						
III	Polynomial interpolation. Lagrange's interpolation polynomial - divided differences Newton's divided difference interpolation polynomial - error of interpolation - finite difference operators - Gregory – Newton forward and backward interpolations - Stirling's interpolation formula -	A L	7	15%		
IV	Numerical differentiation - differential formulas in the case of	7				
	equally spaced points - numerical integration - trapezoidal and		7	15%		
	Simpson's rules - Gaussian integration - errors of integration formulas		/	1570		
	SECOND INTERNAL EXAMINATION					
V	Numerical solution of ordinary differential equations. The Taylor series method - Euler and modified Euler methods - Runge–Kutta methods (2nd order and 4th order only) - multistep methods - Milne's predictor - corrector formulas - Adam-Bashforth & Adam-Moulton formulas		7	20%		
VI	Solution of boundary value problems in ordinary differential equations - finite difference methods for solving two dimensional Laplace's equation for a rectangular region - finite difference method of solving heat equation and wave equation with given initial and boundary conditions		7	20%		
END SEMESTEREXAMINATION						

Question Paper Pattern:

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)