G 1192

(Pages: 2)

Reg. No.

B.TECH DEGREE EXAMINATION, MAY 2015

Sixth Semester

Branch: Civil Engineering

CE 010 601—DESIGN OF STEEL STRUCTURES (CE)

(New Scheme-2010 Admission onwards)

[Regular / Improvement / Supplementary]

Time: Three Hours

Maximum: 100 Marks

Use of IS 800: 2007, IS 875, IS 805, IS 801, IS 811, IS 6533 Part 2 and Steel Table is permitted.

Assume any missing data suitably.

Part A

Answer all questions.

Each question carries 3 marks.

- I. Write short notes on the following terms :-
 - 1 Limit state method.
 - 2 Slab base.
 - 3 Stay's in a water tank.
 - 4 Flat width ratio.
 - 5 Use of fire brick linning in a chimney.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- II. Explain briefly about:
 - 6 HSFG bolt action in a lap joint.
 - 7 Lacing system in a compound column.
 - 8 Design steps for a circular girder.
 - 9 Design step for a light guage steel beam with laterally supported system.
 - 10 Derive the stress relation for self weight, linning and wind pressure in a chimney.

 $(5 \times 5 = 25 \text{ marks})$

Turn over

Answer all questions. Each full question carries 12 marks.

11. Calculate the safe tensile load carrying capacity of a angle section ISA $60 \times 60 \times 6$ mm if 4 bolts are provided at a c/c distance of 50 mm.

Or

- 12. Design a strut member to carry a load of 70 kN . Length of the member is 1.5 m and is connected to a gusset plate of thickness 6 mm.
- 13. Design a compound column section using two channel sections placed back to back to carry a load of 900 KN if both ends of the structure is hinged. Length of the member is 3 m. Also design a suitable lacing system.

Or

- 14. For a column section to carry a load of 1200 KN, design a suitable battening system if the columns are placed toe to toe with an effective length of 3 m.
- 15. Design a rectangular steel water tank upto the supporting beam for a capacity of 120 m³.

Or

- 16. Design a Circular steel water tank with hemispherical bottom for a capacity of 100 m³. Design upto the supporting circular girder.
- 17. Design a light gauge steel column section to carry a load of 300 Kg. Use *two* channel sections placed back to back without having lips. The effective length of the member is 3 m.

Or

- 18. Design a light gauge steel beam section laterally supported to carry a load of 50 Kn/m if the effective span is 2.5 m. Assume two channel sections with lips placed back to back.
- 19. Design a self supporting steel chimney if the total height is 60 m and top diameter is 2.5 m. Wind pressure of 1.5 KN/m² is acting uniformly for a height of 20 from bottom and after that it is uniformly varying to 1.7 KN/m² at the top.

Or

20. Design the Anchor bolt, breach opening, base plate, and foundation of a self supporting chimney if the total height is 25 m and top diameter is 2 m. Wind pressure of 2 KN/m² is acting uniformly through out the structure.

 $(5 \times 12 = 60 \text{ marks})$