G 545

(Pages: 2)

Reg. No.....

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Fourth Semester

Branch: Civil Engineering

FLUID MECHANICS-II (C)

(Old Scheme-Prior to 2010 Admissions)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 4 marks.

- 1. Briefly explain "gradually varied flow".
- 2. Define the terms : (i) hydraulic mean depth ; and (ii) Wetted perimeter.
- 3. What are prismatic channels?
- 4. Briefly discuss: back water curve.
- 5. What are stilling bazins?
- 6. Explain the need of non-dimensionalising an equation.
- 7. What are the practical applications of impact of jets?
- 8. Write a note on surge tanks.
- 9. Why manometric head is important for a centrifugal pump?
- 10. List the salient features of positive displacement pumps.

 $(10 \times 4 = 40 \text{ marks})$

Answer all questions.
Each question carries 12 marks.

11. A trapezoidal channel with side slopes of 3-horizontal to 2 vertical has to be designed to convey 10 m³/s at a velocity of 1.5 m/s, so that the amount of concrete lining for the bed and sides is minimum. Find: (i) the wetted perimeter, and (ii) slope of the bed if Maining's N = 0.014.

Or

12. Determine the best side slope for most economical trapezoidal section for open channel flow.

13. Determine the length of the back water curve caused by an afflux of $2.0\,$ m in a rectangular channel of width $40\,$ m and depth $2.5\,$ m. The slope of the bed is given as $1\,$ in $11000\,$. Take manning's $N=0.03\,$.

Or

- 14. Find the slope of the free water surface in a rectangular channel of width 20 m, having depth of flow 5 m. The discharge through the channel is $50 \text{ m}^3/\text{s}$. The bed of the channel is having a slope of 1 in 4000. Take the value of Chezy's constant C = 60.
- 15. Derive an expression for loss of energy due to hydraulic jump. State the assumptions made.

Or

- 16. A sluice gate discharges water into a horizontal rectangular channel with a velocity of 10 m/s and depth of flow of 1 m. Determine the depth of flow after the jump and consequent loss in total head.
- 17. Derive the expressions for (i) Work done; and (ii) hydraulic efficiency for a pelton wheel turbine. What is the condition for achieving maximum efficiency?

Or

- 18. What is Euler's equation of hydrodynamic machines? Define degree of reaction. Derive an expression for it. What is the degree of reaction for a Pelton turbine?
- 19. A centrifugal pump delivers water against a net head of 14.5 m and a design speed of 1000 r.p.m. The vanes are curved back to an angle of 30° with the periphery. The impeller diameter is 300 mm. and outlet width 50 mm. Determine the discharge of the pump if manometric efficiency is 95 %.

Or

20. Explain how and when separation of flow takes place in a reciprocating pump. Discuss the preventive measures usually adopted for effective reduction of separation in such a pump.

 $[5 \times 12 = 60 \text{ marks}]$

