M 945A1 Total Pages: 2

Register No.:		Name	
register mo	• • • • • • • • • • • • • • • • • • • •	ivanic.	

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

SIXTH SEMESTER B.TECH DEGREE EXAMINATION (R), MAY 2023

(2020 SCHEME)

Course Code: 20RBT382

Course Name: Introduction to Mobile Robotics

Max. Marks: 100 Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Differentiate between wheeled mobile robots and legged mobile robots.
- 2. Describe the critical issues associated with locomotion.
- 3. Explain the properties of a non-holonomic robot.
- 4. Differentiate between the degree of freedom and the degree of steerability.
- 5. Classify the types of sensors used in mobile robots.
- 6. List the characteristics of a sensor.
- 7. With the help of an example, explain the execution of reactive navigation in mobile robots.
- 8. Illustrate the working of the D* algorithm.
- 9. Examine whether the bug algorithm provides the shortest path to the goal position.
- 10. List the applications where collaborative robots are used.

PART B

(Answer one full question from each module, each question carries 14 marks)

MODULE I

- 11. a) Compare the characteristics of steered wheels and castor wheels with the help of equations. (10)
 - b) Summarize the advantages of using wheeled locomotion in planetary rovers. (4)

OR

- 12. a) Compare and contrast underwater robots and surface water robots. (10)
 - b) Differentiate static and dynamic stability in legged mobile robots. (4)

MODULE II

- 13. a) Identify the classification of wheel configurations in rolling vehicles. (10)
 - b) Differentiate between differential degree of freedom (DDOF) and degrees of freedom (DOF). (4)

OR

14. a)		Examine the unicycle model of a differential drive robot.				
	b)	Explain the dynamic model of a mobile robot using the Lagrange method.	(7)			
MODULE III						
15.	a)	Classify the types of image preprocessing techniques in vision systems.	(8)			
	b)	Outline the role of feature extraction in vision systems.	(6)			
OR						
16.	a)	Explain the working principle of the IMU sensor module.	(7)			
	b)	With the help of an example, illustrate the role of heading sensors in robots.	(7)			
MODULE IV						
17.	a) b)	Determine the challenges involved in robot localization. Explain the probabilistic map-based localization.	(6) (8)			
OR						
18.	a)	Differentiate between local and global path planning in robot navigation.	(8)			
	b)	Describe the steps involved in implementing the SLAM technique for autonomous navigation.	(6)			
MODULE V						
19. a)		Illustrate how a mobile robot can be programmed to move to a goal position by controlling its linear and angular velocities.				
	b)	List the approaches in robot navigation that can avoid obstacles to reach the goal position.	(4)			
OR						
20.	a)	With the help of an example, explain the working of the vector field histogram algorithm.	(8)			
	b)	Differentiate between vector field algorithm and dynamic window approach.	(6)			
