	0	0	9	1
r	3	O	J	1

(Pages: 2)

Reg.	No
	*
Bloss	e2:

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Fifth Semester

Branch: Applied Electronics and Instrumentation

AI 010 503—BASIC INSTRUMENTATION AND RECORDING SYSTEM (AI)

(New Scheme—2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.
Each question carries 3 marks.

- 1. What is systematic error? Explain in detail.
- 2. State and prove the bridge balance condition.
- 3. Enumerate the features and applications of wave analyzer.
- 4. What is the principle of digital alpha numeric display? Explain.
- 5. Explain the characteristics of XY plotters in detail.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.
Each question carries 5 marks.

- 6. Explain the generalized configuration of an instrumentation system with a neat diagram.
- 7. What is the principle of a KVA? Explain in detail.
- 8. What is the difference between DC and AC voltmeters? Explain.
- 9. Explain the advantages and applications of current transformer.
- 10. What is the need for delay lines in oscilloscopes? Explain.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

- 11. (i) Define and explain ail the parameters of a measurement system.
 - (ii) Explain the following:-
 - (a) Static and dynamic characteristics;
 - (b) Significant figures.

Or

Turn over

- 12. (i) Discuss the different types of errors in a measurement system.
 - (ii) Give an account on "Requirements of a measurement system".
- 13. (i) Draw Maxwell bridge and explain its principle in detail. Derive its balance condition.
 - (ii) Draw a neat diagram of Q meter and explain it in detail.

01

- 14. (i) Explain the principle and applications of schering bridge with a neat diagram.
 - (ii) Give an account on "Potential transformer".
- 15. (i) Explain the concept of a wave analyzer with a neat diagram.
 - (ii) Draw a neat block diagram of harmonic distortion analyzer and explain its working principle in detail.

Or

- 16. (i) Draw a neat block diagram of digital LCR meter and explain its principle in detail.
 - (ii) Give an account on "Dual slope volt meter".
- 17. Differentiate wave analyzer from spectrum analyzer. Explain the difference. Explain their applications.

Or

- 18. Draw a neat diagram of successive approximation type digital voltmeter and explain its working principle in detail. Differentiate it from dual slope digital voltmeter.
- 19. (i) Explain the concept of DSO oscilloscope with a neat block diagram.
 - (ii) Explain the advantages and potential applications of moving coil recorders.

01

- 20. (i) Explain the principle of UV plotters with a neat diagram.
 - (ii) Write a technical note on "Thermal recording".

 $(5 \times 12 = 60 \text{ marks})$