Register No.:

Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIFTH SEMESTERB.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022 ROBOTICS AND AUTOMATION

(2020 SCHEME)

Course Code: 20RBT307

Course Name: Control Systems

Max. Marks: 100

Duration: 3 Hours

(4)

PART A

(Answer all questions. Each question carries 3 marks)

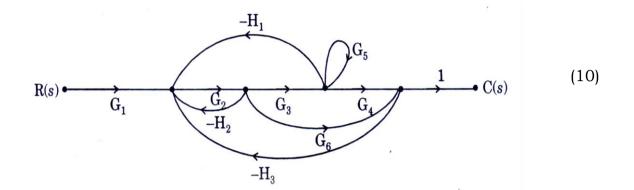
- 1. Differentiate between open loop and closed loop systems.
- 2. Distinguish between order and type of a system
- 3. What is the criterion on the roots of the characteristics equation for the stability? How it is connected to BIBO stability?
- 4. Write any three properties of state transition matrix.
- 5. What are the characteristics of non linear control system?
- Draw the signal flow graph for the following system.
 X₁=ax₀+bx₁+cx₂
 X₂=dx₁+ex₃
- 7. Draw the response of an undamped second order system with complex poles on the left half of S-plane showing rise time, peak overshoot and settling time.
- 8. Define gain margin and phase margin.
- 9. Give any two advantages of state space analysis.
- 10. What are the types of nonlinearities in control system?

PART B

(Answer one full question from each module, each question carries 14marks)

MODULE I

11. a) Determine the transfer function X(S)/F(S) for the system given below.


b) Explain the components of a typical control system.

D

(6)

OR

12. a) Find the overall gain for the given signal flow graph.

b) Explain any two applications of closed loop control system. (4)

MODULE II

- 13. a) Explain time response of a second order system with unit step input. (7)
 - b) What is steady state error? Also explain static error coefficient. (7)

OR

- 14. a) Check the stability of the system whose characteristic equation is given by $s^4 + 2s^{3+}6s^{2+}4s+1 = 0$. (7)
 - b) Derive and explain Static Error Coefficient of Type 1 system. (7)

MODULE III

- 15. a) Construct the Bode plot for unity feedback system G(S)=1000/[S(S+1)(S+10)]. Find the gain margin and phase margin. (8)
 - b) Explain P, PI, PID, controllers.

OR

16. Sketch the root locus plot for the system whose open loop transfer function is given by $GH(s) = \frac{k}{s(s^2 + 4s + 13)}$. ()

MODULE IV

17. a) Derive an expression for state transition matrix. (7) b) Determine the state transition matrix of the following system $\begin{bmatrix} X1 & * \\ X2 & * \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X1 \\ X2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} U1 \\ U2 \end{bmatrix}, \quad Y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} X1 \\ X2 \end{bmatrix}$ (7)

Page 2 of 3

634A2

(5)

(4)

OR

18.	a)	Obtain	the	state	model	from	transfer	function	<i>.</i>
		$[s^{3}+8s^{2}+3s+2]Y(s)=U(s).$							

b) Derive and show the relationship between state equation and transfer function. (7)

MODULE V

19.	a)	Explain the application of describing function for stability analysis				
		of autonomous system.				

b) Explain the nonlinearities in control system.

OR

- 20. a) Explain Lyapunov methods to stability of linear and nonlinear (10)
 - b) What is a nonlinear system? Explain.