SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)
FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022
TELECOMMUNICATION ENGINEERING (2021 Scheme)

Course Code : $21 T E 101$

Course Name:
Applied Linear Algebra
Max. Marks : 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Find the basis and dimension of the vectors space generated by $S=\{(1,2)(1,1)$ $(3,1)\}$.
2. Express the vector $V=(1,-2,5)$ in 3 D vector space on a linear combination of the vector $\mathrm{v} 1=(1,1,1) \mathrm{v} 2=(1,2,3) \mathrm{v} 3=(2,-1,1)$.
3. Explain the system of homogenous linear equation.
4. Find the inverse of matrix $A=\left[\begin{array}{cc}-2 & -1 \\ 3 & 3\end{array}\right]$.
5. Explain Inner product, Norm and Distance in vector space
6. Show that given vectors are orthogonal and orthonormal basis.

$$
V_{1}=\left[\begin{array}{l}
3 / \sqrt{11} \\
1 / \sqrt{11} \\
1 / \sqrt{ } 11
\end{array}\right] \quad V_{2}=\left[\begin{array}{c}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right] \quad V_{3}=\left[\begin{array}{c}
-1 / \sqrt{66} \\
-4 / \sqrt{66} \\
7 / \sqrt{66}
\end{array}\right]
$$

7.

Let $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$, Find the eigen values and their algebraic multiplicities.
8. Find the rank of $A A^{T}$.
$\mathrm{A}=\left[\begin{array}{lll}3 & 2 & 0 \\ 1 & 1 & 1\end{array}\right]$.

PART B
 (Answer one full question from each module, each question carries 6 marks) MODULE I

9. Check whether the vectors $\mathrm{V}_{1}=(2,1,3) \quad \mathrm{V}_{2}=(5,0,3) \quad \mathrm{V}_{3}=(3,-1,0)$ are linearly independent or not.

OR

10. Explain the Algebraic system and its general properties

MODULE II

11. Find the solution of the given linear system using Gauss elimination method.

$$
\begin{gather*}
x+4 y-z=-5 \tag{6}\\
x+y-6 z=-12 \\
3 x-y-z=4
\end{gather*}
$$

OR

12. Check whether the given linear system is Trivial or not.

$$
\begin{array}{r}
x+3 y+2 z=0 \\
2 x-y+3 z=0 \tag{6}\\
3 x-5 y+4 z=0 \\
x+17 y+4 z=0
\end{array}
$$

13. Find all the fundamental subspace of the matrix given below.

$$
A=\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 2 \tag{6}\\
2 & -2 & -3 & 6 & 1 \\
-1 & -4 & 4 & -3 & 7
\end{array}\right]
$$

OR

14. Find the change of basis of a given matrix from S_{1} to S_{2} and S_{2} to S_{1}.
$\mathrm{S}_{1}=\left\{\mathrm{u}_{1}=(1,2), \mathrm{u}_{2}=(1,3)\right\}, \mathrm{S}_{2}=\left\{\mathrm{v}_{1}=(3,1), \mathrm{v}_{2}=(0,1)\right\}$

MODULE IV

15. Find orthonormal basis of given vectors using Gram Schmidt orthonormalization.
$\mathrm{V}_{1}=\binom{3}{1}, \mathrm{~V}_{2}=\binom{2}{2}$

OR

16. Check whether the following orthogonal set obeys the Pythagoras theorem.

$$
\mathrm{u}=(1,2,-3,4), \mathrm{v}=(3,4,1,-2), \mathrm{w}=(3,-2,1,1)
$$

MODULE V

17. Diagonalize the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$

OR

18. Check whether the given matrix is Hermitian or not.

$$
\mathrm{A}=\left[\begin{array}{ll}
0 & i \tag{6}\\
i & 0
\end{array}\right]
$$

MODULE VI

19. Find the SVD of the matrix $A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$

OR
20. Find the least square solution to the matrix equation using pseudo inverse method.

$$
\left[\begin{array}{cc}
2 & -2 \\
-2 & 2 \\
5 & 3
\end{array}\right] X=\left[\begin{array}{c}
-1 \\
7 \\
-26
\end{array}\right]
$$

