Name:

SAINTGITS COLLEGE OF ENGINEERING (AUTONOMOUS)

(AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH DEGREE EXAMINATION (Regular), DECEMBER 2022

TELECOMMUNICATION ENGINEERING

(2021 Scheme)

- Course Code : 21TE101
- Course Name: Applied Linear Algebra

Max. Marks : 60

Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Find the basis and dimension of the vectors space generated by S = $\{(1,2) (1,1) (3,1)\}$.
- 2. Express the vector V= (1, -2, 5) in 3D vector space on a linear combination of the vector v1 = (1,1,1) v2 = (1, 2, 3) v3 = (2, -1, 1).
- 3. Explain the system of homogenous linear equation.

4. Find the inverse of matrix $A = \begin{bmatrix} -2 & -1 \\ 3 & 3 \end{bmatrix}$.

- 5. Explain Inner product, Norm and Distance in vector space
- 6. Show that given vectors are orthogonal and orthonormal basis.

$$V_{1} = \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix} \quad V_{2} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix} \quad V_{3} = \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix}$$

7.

Let A = $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, Find the eigen values and their algebraic multiplicities.

8. Find the rank of AA^T.

```
\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}.
```

PART B

(Answer one full question from each module, each question carries 6 marks) MODULE I

9. Check whether the vectors V_1 = (2,1,3) V_2 = (5,0,3) V_3 = (3, -1,0) are linearly independent or not. (6)

Register No.:

Α

560A1

Total Pages: **3**

OR

10. Explain the Algebraic system and its general properties

(6)

(6)

MODULE II

11. Find the solution of the given linear system using Gauss elimination method.

$$x + 4y - z = -5$$
(6)

$$x + y - 6z = -12$$

$$3x - y - z = 4$$

OR

12. Check whether the given linear system is Trivial or not.

$$x + 3y + 2z = 0$$

$$2x - y + 3z = 0$$

$$3x - 5y + 4z = 0$$

$$x + 17y + 4z = 0$$
(6)

MODULE III

13. Find all the fundamental subspace of the matrix given below.

	$\begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$	-2	-1	3	21
		_	_	~	7
A =	12	-2	-3	6	1
	1	4	4	2	- I
	L-1	-4	4	-3	/]

OR

14. Find the change of basis of a given matrix from S_1 to S_2 and S_2 to S_1 . $S_1 = \{u_1 = (1,2), u_2 = (1,3)\}, S_2 = \{v_1 = (3,1), v_2 = (0,1)\}$ (6)

MODULE IV

15.	Find orthonormal basis of given vectors using Gram Schmidt			
	orthonormalization.	(6)		
	$V_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$			

OR

16. Check whether the following orthogonal set obeys the Pythagoras theorem. u = (1, 2, -3, 4), v = (3, 4, 1, -2), w = (3, -2, 1, 1)(6)

MODULE V

17. Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

OR

18. Check whether the given matrix is Hermitian or not. $A = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ (6)

MODULE VI

19. Find the SVD of the matrix A= $\begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix}$

OR

20. Find the least square solution to the matrix equation using pseudo inverse method.

[2]	-2		[-1]	
-2	2	X =	7	
5	3		L-26J	

(6)

(6)

Α