

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

(AN AUTONOMOUS COLLEGE AFFILIATED TO APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY, THIRUVANANTHAPURAM)

FIRST SEMESTER M.TECH. DEGREE EXAMINATION(S), JULY 2021 (POWER SYSTEMS)

- **Course Code:** 20EEPST101
- APPLIED MATHEMATICS **Course Name:**
- Max. Marks: 60

Duration: **3 Hours**

(6)

PART A

(Answer all questions. Each question carries 3 marks)

- 1. Solve the difference equation $y_{n+1} - 5y_n = 0$ using **Z** transforms
- 2. Solve the Euler equation for the functional $\int_{x_0}^x \frac{{y'}^2}{x^3} dx$.
- 3.
- Show that $y(x) = \frac{4x}{3}$ is a solution of the integral equation $y(x) = x + \int_0^1 xt^2y(t)dt$. Prove that the maximum likelihood estimate of the parameter \propto of a population having density function $\frac{2}{\alpha^2}(\alpha x), 0 < x < \infty$ for a sample of unit size is 2x, x being the sample value. 4.
- Form the normal equations for fitting a parabola in least squares method with n-data. 5.
- Find whether the function $f(x) = \begin{cases} 5x^3 3x^2, -1 \le x \le 0\\ -5x^3 3x^2, 0 \le x \le 1 \end{cases}$ is a cubic spline? 6.
- 7. Suppose the vectors u, v, w are linearly independent. Show that the vectors u + v, u - v, u - 2v + ware also linearly independent.
- Consider the linear mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (3x + 4y, 2x 5y). Find the matrix of F 8. in the standard ordered basis for \mathbb{R}^2 .

PART B

(Answer one full question from each module, each question carries 6 marks)

MODULE I

Find the Fourier sine transform of $e^{-|x|}$, Hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m > 0$ (6)9.

OR

10. Find the Fourier transform of
$$f(x) = \begin{cases} 1, |x| < 1\\ 0, |x| > 1 \end{cases}$$
. Hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$. (6)

MODULE II

Find the extremal of the functional $\int_0^1 (y + x^2 + \frac{{y'}^2}{4}) dx$, y(0) = 0, y(1) = 0. (6)11.

12. Find the shape of the curve of given perimeter enclosing maximum area.

MODULE III

13. Convert the differential equation y''(x) + y(x) = 0, y(0) = 0, y'(0) = 0 to the Volterra Integral (6) equation.

OR

14. Solve the given Volterra Integral equation $y(x) = (1 + x) + \int_0^x (x + t)y(t)dt$ using successive (6) approximation.

MODULE IV

15. The transition probability matrix of a Markov chain $\{X_n, n \ge 0\}$ having three states 1,2 and 3 (6) is $P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 03 & 0.3 \end{bmatrix}$, and the initial probability distribution is $p(0) = [0.5 \ 0.3 \ 0.2]$. Find $P\{X_3 = 3, X_2 = 2, X_1 = 1, X_0 = 3\}$

OR

16. A message transmission system is found to be Markovian with the transition probability of (6) current message to next message as given by the matrix $P = \begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.2 & 0.7 \end{bmatrix}$. The initial

probabilities of the states are $p_1(0) = 0.4$, $p_2(0) = 0.3$, $p_3(0) = 0.3$. Find the probabilities of the next message.

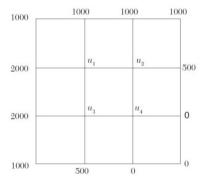
MODULE V

17. Use least squares method to fit a curve of the form $y = ae^{bx}$ to the data

(6)

х	1	2	3	4	5	6
у	7.209	5.265	3.846	2.809	2.052	1.499
OR						

18. Given the values u(x, y) on the boundary of the square as in figure, evaluate the function (6) u(x, y) satisfying the Laplace equation $\nabla^2 u = 0$ at the pivotal points by Gauss-Seidel Method.



MODULE VI

19. Let *W* be the subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1, -2, 5, -3), u_2 = (2, 3, 1, -4),$ (6) $u_3 = (3, 8, -3, -5)$. Find a basis and dimension of *W*. Extend the basis of *W* to a basis of \mathbb{R}^4 .

OR

20. Define an inner product space. Show that in an inner product space V and $u, v \in V$, (6) $||u + v||^2 + ||u - v||^2 = 2||u||^2 + 2||v||^2$ where $||u|| = \sqrt{\langle u, u \rangle}$