184A3

A

SAINTGITS COLLEGE OF ENGINEERING KOTTAYAM, KERALA

Course Code: 20EEPST101

Course Name: APPLIED MATHEMATICS

Max. Marks: 60
Duration: 3 Hours

PART A

(Answer all questions. Each question carries 3 marks)

1. Solve the difference equation $y_{n+1}-5 y_{n}=0$ using \mathbf{Z} transforms
2. Solve the Euler equation for the functional $\int_{x_{0}}^{x} \frac{y^{\prime 2}}{x^{3}} d x$.
3. Show that $y(x)=\frac{4 x}{3}$ is a solution of the integral equation $y(x)=x+\int_{0}^{1} x t^{2} y(t) d t$.
4. Prove that the maximum likelihood estimate of the parameter \propto of a population having density function $\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha$ for a sample of unit size is $2 x, x$ being the sample value.
5. Form the normal equations for fitting a parabola in least squares method with n-data.
6. Find whether the function $f(x)=\left\{\begin{array}{l}5 x^{3}-3 x^{2},-1 \leq x \leq 0 \\ -5 x^{3}-3 x^{2}, 0 \leq x \leq 1\end{array}\right.$ is a cubic spline?
7. Suppose the vectors u, v, w are linearly independent. Show that the vectors $u+v, u-v, u-2 v+w$ are also linearly independent.
8. Consider the linear mapping $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $F(x, y)=(3 x+4 y, 2 x-5 y)$. Find the matrix of F in the standard ordered basis for \mathbb{R}^{2}.

PART B
(Answer one full question from each module, each question carries 6 marks)
MODULE I
9. Find the Fourier sine transform of $e^{-|x|}$, Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi e^{-m}}{2}, m>0$

OR
10. Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1,|x|<1 \\ 0,|x|>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty \sin x} \frac{x}{x} d x$.

MODULE II

11. Find the extremal of the functional $\int_{0}^{1}\left(y+x^{2}+\frac{y^{\prime 2}}{4}\right) d x, y(0)=0, y(1)=0$.

OR

12. Find the shape of the curve of given perimeter enclosing maximum area.

184A3

MODULE III

13. Convert the differential equation $y^{\prime \prime}(x)+y(x)=0, y(0)=0, y^{\prime}(0)=0$ to the Volterra Integral equation.

OR

14. Solve the given Volterra Integral equation $y(x)=(1+x)+\int_{0}^{x}(x+t) y(t) d t$ using successive approximation.

MODULE IV

15. The transition probability matrix of a Markov chain $\left\{X_{n}, n \geq 0\right\}$ having three states 1,2 and 3 is $P=\left[\begin{array}{lll}0.2 & 0.3 & 0.5 \\ 0.1 & 0.6 & 0.3 \\ 0.4 & 03 . & 0.3\end{array}\right]$, and the initial probability distribution is $p(0)=\left[\begin{array}{lll}0.5 & 0.3 & 0.2\end{array}\right]$. Find $P\left\{X_{3}=3, X_{2}=2, X_{1}=1, X_{0}=3\right\}$

OR
16. A message transmission system is found to be Markovian with the transition probability of current message to next message as given by the matrix $P=\left[\begin{array}{lll}0.2 & 0.3 & 0.5 \\ 0.1 & 0.2 & 0.7 \\ 0.6 & 0.3 & 0.1\end{array}\right]$. The initial probabilities of the states are $p_{1}(0)=0.4, p_{2}(0)=0.3, p_{3}(0)=0.3$. Find the probabilities of the next message.

MODULE V
17. Use least squares method to fit a curve of the form $y=a e^{b x}$ to the data

x	1	2	3	4	5	6
y	7.209	5.265	3.846	2.809	2.052	1.499

OR

18. Given the values $u(x, y)$ on the boundary of the square as in figure, evaluate the function $u(x, y)$ satisfying the Laplace equation $\nabla^{2} u=0$ at the pivotal points by Gauss-Seidel Method.

MODULE VI

19. Let W be the subspace of \mathbb{R}^{4} spanned by the vectors $u_{1}=(1,-2,5,-3), u_{2}=(2,3,1,-4)$,
$u_{3}=(3,8,-3,-5)$. Find a basis and dimension of W. Extend the basis of W to a basis of \mathbb{R}^{4}.

OR

20. Define an inner product space. Show that in an inner product space V and $u, v \in V$,
$\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}$ where $\|u\|=\sqrt{\langle u, u\rangle}$
