\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Fourth semester B.Tech examinations (S), September 2020

Course Code: CE202
 Course Name: STRUCTURAL ANALYSIS - I (CE)

Max. Marks: 100
Duration: 3 Hours
Answer any two full questions from each part. Assume any missing data suitably.

PART A

Answer any two full questions, each carries 15 marks.
Marks
1 a) Differentiate the 'method of sections' and 'method of joints' for the analysis of 5 truss.
b) Analyse the truss shown in Fig. 1 and tabulate the member forces.

Fig. 1

2 a) State Castigliano's first theorem and derive the relation between strain energy and displacement.
b) Determine the static indeterminacy and kinematic indeterminacy of the structures shown in Fig.2.

3 a) For the pin jointed plane truss given in Fig.3, determine the vertical deflection at B by unit load method. Given $\mathrm{E}=200 \mathrm{GPa}$. Cross section of horizontal member is 150 sq.mm and of inclined members is 200sq.mm.

Fig. 3
b) With an example, explain the effect of lack of fit in a statically determinate truss.

PART B

4 Analyse the frame in Fig. 4 by strain energy method and calculate all support 15 reactions.

5
a) Using the method of consistent deformation, determine the reaction at the prop in a propped cantilever shown in Fig. 5.

b) Draw Influence line diagrams of the support reactions at A and B for the beam shown in Fig.6.

Fig. 6
a) A light cable is supporting a load of w per unit run on the horizontal span L . 7 Ends of the cable are supported at points which are at the same level. If h is the dip, calculate reactions at the supports.
b) A cable AD of span 7 meter is supporting two concentrated loads $10 \mathrm{kN}, 20 \mathrm{kN}$ at points B and C which are 2 m and 5 m from left support. Support A and D are at the same level. Dip of point C is 2.2 m . Calculate the support reactions and dip of point B. Also calculate the tension in the cable in different segments.
a) A three-hinged parabolic arch of span 20 m and a rise 4 m carries a uniformly 12 distributed load of 20 kN per meter over the left half of the span. Find the maximum bending moment in the arch.
b) A 3-hinged semicircular arch of radius R carries a uniformly distributed load of 8 w per unit run over the whole span. Find the location and magnitude of the maximum bending moment for the arch.
9 a) A cable of span 100 meter hangs between two supports at the same level. It carries a UDL of $25 \mathrm{kN} / \mathrm{m}$ over the entire span. Determine the reactions on the
top of the supporting tower where the cable passes over a frictionless pulley. Given: dip of the cable: 12 m and the anchor cable makes an angle 30° with the horizontal.
b) A three hinged parabolic arch has a span of L and a rise of h . Draw the 10 influence line diagram for the following.
i) Horizontal thrust, ii) Bending moment at a point 'a' distance from the left support.

