Scheme of Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

EIGHTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

Course Code: CS402
 Course Name: DATA MINING AND WAREHOUSING

Max. Marks: 100
Duration: 3 Hours

$$
\begin{aligned}
& \text { PART A } \\
& \text { Answer all questions, each carries } 4 \text { marks. } \\
& \text { making-2 marks }
\end{aligned}
$$

$1 \quad$ Helps in decision making-2 marks
Explanation- 2marks
Any four differences - 4 marks
Necessity - 2marks
List any four of the following, (2 marks)
(Smoothing, aggregation, generalization,normalization,attribute construction)

Classification- 2 marks, justification - 2 marks
5 Use of LR-2 marks, Explanatuion -2 marks
Significance - 4 marks
Support-2 marks
Confidence - 2 marks

$$
\begin{equation*}
\text { distance }=\sum_{i=0}^{n-1} \mid(x[i]-y[i] \mid \tag{4}
\end{equation*}
$$

Answer - 2 marks ANS:11
9 Any 2 reasons - 2 marks each
Any 2 differences - 2 mark each

PART B

Answer any two full questions, each carries 9 marks.

Equation - 2 marks
a) Diagram - 2 marks

Explanation - 3marks
b) i) 2 marks Ans: $0,0.125,0.25,0.5,1$
ii) 2 marks ANS: $-0.94868,-0.63246,-0.31623,0.31623,1.58114$
a) Fact table -2 marks (See below)

Dimension table -4 marks
b) Query - 3 marks

You first will need to slice on the condition game $==$ 'GM Place'. Secondly you will need to slice on date.year $==$ '2010'. This will give you all the charges for GM Place in 2010. Next we slice to spectator.type $=$ 'student'. Lastly we sum all the charges in the display phase (pivot).
OR
The specific OLAP operations to be performed are:.
Roll-up on date from date id to year.
Roll-up on game from game id to all.
Roll-up on location from location id to location name.
Roll-up on spectator from spectator id to status.
Dice with status="students", location name="GM Place", and year = 2010.
a) Brief description on the following: Cleaning, integration \& transformation, reduction, discretization (2.25 marks each)

PART C

Answer any two full questions, each carries 9 marks.

Classification method - 5 marks
Correct answer - 4 marks
$\mathrm{P}($ Male $)=4 / 8=.5$
$\mathrm{P}($ Female $)=4 / 8=.5$
Person $=\operatorname{argmax} \mathrm{P}($ person $) \mathrm{P}($ Height $=6 /$ Person $) \mathrm{P}($ weight $=130 /$ Person $) \mathrm{P}($ Footsize $=$ 8/Person)
$\mathrm{P}($ Person $=$ Male $) \mathrm{P}($ Height $=6 /$ Male $) \mathrm{P}($ weight $=130 /$ Male $) \mathrm{P}($ Footsize $=8 /$ Male $)=.5^{*}$ $3 / 4 * 0 / 4 * 1 / 4=0$
$\mathrm{P}($ Person $=$ Female $) \mathrm{P}($ Height $=6 /$ Female $) \mathrm{P}($ weight $=130 /$ Female $) \mathrm{P}($ Footsize $=8 / \mathrm{Fe}$ male $)=.5 * 1 / 4 * 2 / 4 * 2 / 4=.0313$

Therfore, Class is 'Female'.
Classification method - 5 marks
Correct answer - 4 marks
Hamming Distance:
Let Qn be $\{$ pepper $=$ false, ginger $=$ true, chilly $=$ true $\}$
$\operatorname{Dist}(\mathrm{A}, \mathrm{Qn})=1+0+0=1$
Dist(B,Qn) $=1+1+1=3$
$\operatorname{Dist}(\mathrm{C}, \mathrm{Qn})=0+0+0=0$
$\operatorname{Dist}(\mathrm{D}, \mathrm{Qn})=0+0+1=1$
$\operatorname{Dist}(\mathrm{E}, \mathrm{Qn})=1+1+1=3$
Since it is 3 NN, 3 nearest neighbors are taken, ie. $A=$ false, $C=$ false and $D=$ true.
Majority voting is applied, and hence class is liked=false.
a) Two difference- 1.5 marks each
b) Algorithm - 3 marks

Explanation - 3 marks

PART D

Answer any two full questions, each carries 12 marks.
a) FP tree construction - 3 marks

FP generation - 5 marks

Frequent patterns generated:
I2 I5:2, I1 I5:2, I2 I1 I5:2
I2 I4:2
I2 I3:4 I1 I3:2 I2 I1 I3:2
I2 I1 :4
b) Identifying 3 association rules - 4 marks

Strong association rules:
I1\&I5 -> I2
I2 \& I5 -> I1
I5 -> I1 \& I2
a) Explanation - 8 marks
b) Any two advantages - 2 marks each
a) Explanation - 4 marks

Drawbacks - 2 marks
b) Equation 3 mark..solution 3 mark

$$
\begin{aligned}
& \operatorname{TF}(d, t)= \begin{cases}0 & \text { iffreq }(d, t)=0 \\
1+\log (1+\log (\text { freq }(d, t))) & \text { otherwise. }\end{cases} \\
& \operatorname{IDF}(t)=\log \frac{1+|d|}{\left|d_{t}\right|}, \quad \text { thus } \operatorname{TF-IDF}(d, t)=\operatorname{TF}(d, t) \times \operatorname{IDF}(t) .
\end{aligned}
$$

where d is the document collection, and $d t$ is the set of documents containing term t.
$\operatorname{TF}(\mathrm{D} 3, \mathrm{~T} 4)=1+(\log (1+\log 6))=1.249, \operatorname{IDF}(T 4)=\log \left(\frac{1+4)}{3}=0.2201\right.$
TF_IDF $=$ TF*IDF $=1.249 * 0.2201=0.2749$

