

Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL2018

Course Code: ME306

Course Name: ADVANCED MANUFACTURING TECHNOLOGY

Ma	ıx. M		: 3 Hours
		PART A	1
		Answer any three full questions, each carries 10 marks.	Marks
1	a)	Three Methods $-(2 * 3= 6)$	(6)
		1.water atomization 2.Gas atomization 3. Centrifugal atomization	
	b)	Any Four Advantages $(1*4=4)$	(4)
2	a)	Fix the floating Zero at Left bottom corner of the work (You may fix any where)	(10)
		Redraw the figure and mark (0,0,0)	
		O001	
		N001G21 G17 G90 G04;	
		N002 G00 G28 ;	
		N003 M06 T001;	
		N004 G54 X0 Y0 Z0 ;	
		N005 G29 X0 Y0 Z5 ;	
		N006 M03 S1000 M08 ;	
		N007 GO1 F50 Z -10 ;	
		N008 G01 X35 ;	
		N009 G01 X50 Y15 ;	
		N009 G01 Y40 ;	
		N010 G03 X40 Y50 I 10 J0 F25 ;	
		In Fanuc control that is G03 X40 Y50 I -10 J0 F25 (otherwise G03 X40	
		Y50R10 F25) is to be used. N011 G01 X10 F50;	
		N012 G02 X0 Y40 I 10 J0 F25 ;	
		Sequence no. N12G02 X0 Y40 I 10 J0 F25 that also to be G02 X0 Y40 I -10	
		<u>J0 F25</u>	
		(Otherwise G03 X0 Y40R10 F25)	
		N013 G01 X0Y0 F50 ;	
		N014 G00 Z5;	

		N015 M05 M09 ;	
		N016 G00 G28 ;	
		N017 M02;	
		**** Some G codes may vary using the programming approach. This may	
		consider during valuation.	
3	a)	Any 5 G codes and its meaning $(1 * 5 = 5)$	(5)
	b)	Any Two method $(2.5 * 2 = 5)$	(5)
		Eg. $L1 = LINE/P3, P4$	
		L2 = LINE/P5, PARLEL, L3	
4	a)	Figure (1.5 * 1 =1.5)	(6)
		Three process- pre heating . sintering and cooling $(1.5 * 3 = 4.5)$	
	b)	Any Four points ($1*4=4$)	(4)
		PART B	
		Answer any three full questions, each carries 10 marks.	(-
5	a)	Figure (2* 1 = 2)	(5)
		Explanation $(3 *1 = 3)$	· ->
	b)	Any five parameters ($1*5=5$)	(5)
		• Orifice (Nozzle) – Sapphires – 0.1 to 0.3 mm	
		● Focusing Tube – WC – 0.8 to 2.4 mm	
		● Pressure – 2500 to 4000 bar	
		• Abrasive – garnet and olivine - #125 to #60	
		• Abrasive flow - 0.1 to 1.0 Kg/min	
		● Stand off distance – 1 to 2 mm	
		● Machine Impact Angle – 60 o to 90 0	
		● Traverse Speed – 100 mm/min to 5 m/min	
		● Depth of Cut – 1 mm to 250 mm	
6	a)	Any 4 characteristics (1.5* 4 =6)	(6)
		1. The process can be used to machine any work material if it is electrically	, ,
		conductive	
		2.Material removal depends on mainly thermal properties of the work material	
		rather than its strength, hardness etc	

		3. In EDM there is a physical tool and geometry of the tool is the positive	<u> </u>		
		impression of the hole or geometric feature machined	ı		
		4. The tool has to be electrically conductive as well. The tool wear once again	ı		
		depends on the thermal properties of the tool material	ı		
		5. Though the local temperature rise is rather high, still due to very small pulse	ı		
		on time, there is not enough time for the heat to diffuse and thus almost no	ı		
		increase in bulk temperature takes place. Thus the heat affected zone is limited to	İ		
		2 – 4 μm of the spark crater	İ		
	b)	Any four $(1 * 4 = 4)$	(4)		
		☐ Aerospace, Medical, Electronics and Semiconductor applications	ı		
		☐ Tool & Die making industries.	ı		
		☐ For cutting the hard Extrusion Dies	ı		
		☐ In making Fixtures, Gauges & Cams △ ∨	ı		
		☐ Cutting of Gears, Strippers, Punches and Dies	İ		
		☐ Manufacturing hard Electrodes.	İ		
		☐ Manufacturing micro-tooling for Micro-EDM, Micro-USM and such	ı		
		other micromachining applications.	ı		
7	a)	Figure (2* 1 = 2)	(5)		
		Explanation $(3 *1 = 3)$	ı		
	b)	10 Г	(5)		
		<u>1</u> 4 - 2014	ı		
		# 2 * * O O	ı		
		MRR MRR MRR MRR MRR MRR MRR MRR MRR MRR	ı		
			ı		
		0.1 2 4 10 20 40 100 f $ (3*2=6) $	İ		
8	a)	Figure (1*1 = 1)	(4)		
		Explanation $(3*1 = 3)$) , , , ,		
	b)	Figure $(2*1 = 2)$	(6)		
		Explanation $(4*1 = 4)$	` <i>'</i>		
		PART C			
Answer any four full questions, each carries 10 marks.					
9	a)	Two technique $(3 * 2 = 6)$	(6)		
		1. Stand off 2. Contact	<u> </u>		

Pages 4

	b)	Figure $(1*1 = 1)$	(4)
		Explanation $(3*1 = 3)$	
10	a)	Explanation $(4*1 = 4)$	(10)
		Figure (3*2 =6)	
11	a)	Figure $(1*1 = 1)$	(6)
		Explanation $(3*1 = 3)$	
		Application $(1*2 = 2)$	
	b)	Figure (1*1 = 1)	(4)
		Explanation $(3*1 = 3)$	
12	a)	Figure $(2*1 = 2)$	(6)
		Explanation $(4 *1 = 4)$	
	b)	Any Four points $(1*4=4)$	(4)
13	a)	Figure (3*1 = 3)	(7)
		Explanation $(4 *1 = 4)$	
	b)	Any Six process $(0.5 * 6 = 3)$	(3)
14	a)	Figure (2*1 = 2)	(5)
		Explanation $(3*1 = 3)$	
	b)	Figure (2*1 = 2)	(5)
		Explanation $(3*1 = 3)$	
	1	***	