APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017

Course Code: EE 216 **Course Name: Electrical Engineering**

Part A

Answer any TWO full questions (2 X 15=30 marks)

		Answer any I WO full questions (2 X 15=30 marks)
1	a)	Working principle of transformer- Mutual induction
		Explanation – 3 marks
		Diagram -2marks
	b)	Primary induced emf $E_1 = 500V$
		Frequency=50Hz, N_1 = 400
		Net cross sectional area of core $A = 0.006 \text{ cm}^2$
		Maximum value of flux $\varphi_{max} = E_1 / 4.44 \text{ fN}_1 (1 \text{ Mark})$
		$= 500/400 \times 50 \times 400$
		= 0.00563Wb (1 Mark)
		i) Peak flux density in the core $B_{max} = \varphi_{max}/A = 0.9384 \text{ T} (1.5 \text{ Marks})$
		ii) Voltage induced in the secondary winding $E_2 = E_1 N_2/N_1 = 1250V (1.5 Marks)$
	c)	Draw approximate and exact equivalent circuit of transformer
		Equivalent circuit - 3 marks
		Explanation – 2 marks
2	a)	Emf equation of dc generator
		Generated $emfE_g = \varphi ZNP/60A$ Apj ABDUL KALAM
		Φ- fluxperpole
		Z- total no. of conductors
		N-rotational speed of armature
		P- no. of poles
		A-no. of parallel path A=2 for wave wound, A=P for lap wound
		Derivation – 5 marks
	b)	Generated emfE _g = φ ZNP/60A (2 Marks) ²⁰¹⁴
	U)	i) When machine is lap connected $A=P=6$
		$E_{g} = 0.05X720X1000X6/60X6$
		= 600 V (3 Marks)
		ooov (o marks)
	c)	Interpoles are provided in midway between main poles for
		a) Neutralizing armature reaction
		b) Spark less commuta-
		tion
2		Explanation- 5marks
3	a)	$V_1=250V, N_1=120, N_2=800$
)	Secondary voltage $V_2 = V_1 N_2 / N_1 = 250X800 / 120 = 1667V$
		Emf per turn= $V_2/N_1 = 250/120 = 2.08V$
		Secondary voltage $V_2 = 2.08X800 = 1667V$

(Equation 2.5 Marks, Answer 2.5 Marks) The effect of magnetic field set up by the armature current on distribution of flux b) under the main poles of a dc machine is known as armature reaction.

Cross magnetizing effects and demagnetizing effects Explanation- 5 makrs

- c) Conditions for dc shunt generators in parallel
 - a) Same polarity
 - b) Equal terminal voltage
 - Explanation- 5marks

Part B

Answer any TWO full questions (2 X 15=30 marks)

4

a)

a) torque armature current characteristic- electrical characteristics
b) Speed- armature current characteristic- speed characteristics
c) speed- torque current characteristic- mechanical characteristics
d) Performance characteristics
(Naming the important charecteristics of DC Motor 2 Marks, Characteristics of DC Series motor 3 Marks)

- b) Line current at half load =60/2=30A (1 Mark) $I_a = I_l - I_{sh} = 30-2=28 A$ (1 mark) E_b half load = V- $I_aR_a = =120-28X0.2= 114.4V(1 Mark)$ $E_bFull load = 108.4 V$ (1 Mark) Speed of motor at half full load N= N_fX E_b half load/ E_b full load= 1899.63rpm (1 Mark) c) Pawer flow diagram of a DC motor
- c) Power flow diagram of a DC motor Diagram- 5 marks

a) Write ay five advantages of stationary armature and rotating field in an alternator.

- a) Easier to insulate for very high voltage
- b) The load circuit can be connected directly with the fixed terminals of the stator
- c) Prevent deformation developed by the mechanical stresses
- d) The armature winding is cooled more readily
- e) Only two slip rings are are required for the supply of direct current to therotor Any five advantages – 5 marks
- **b)** Distribution factor = Emf induced in distributed winding / EMF induced if the winding

would have been

concentrated $K_d = \frac{\sin m\beta/2}{m\sin\beta/2}$

Proof – 5 marks

- c) Draw the equivalent circuit of three phase induction motor- 3 marks Explanation- 2 marks
- a) Three point starter Diagram- 4 marks Explanation-4 marks
 - **b)** Starting methods
 - a) From DC source
 - b) AC motor
 - c) Damper grids in the pole faces Explanation – 7 marks

Part C

Answer any TWO full questions (2 X 20=40 marks)

7 **a)** Explain the production of pulsating magnetic field in single phase induction motor- 5 marks

Double revolving field theory – with diagram and explanation-5 marks

- **b)** $N_s = 120 f/P = 1000 rpm$
 - i) $Slip=\frac{N_s-N}{N}=0.025$

(1 mark)

5

6

Stator output power= 40- 1=39 kW

Power input to rotor, $P_2 = 39 \text{ kW}$

- ii) Rotor cu loss, $P_{cu} = sP_2 = 0.975 \text{ kW}$ Mechanical power developed, $P_2 - P_2 = 38.025 \text{kW}$ (3mark) Motor output= Pmech- friction and windage losses= 36.025 kW (2marks)
- iii) BHP= 36.025/0.7355= 49 (2 marks)
- iv) Motor efficiency=(36.025/40)X100=90.0625% (2 marks)
- a) Construction of PMMC instrument- 3 marks

Diagram- 3 marks

Working-4 marks

b) Electrodynamometer type wattmeter Construction- 6marks

Diagram-4 marks

- a) AC servo motors are best suited for low power applications, ac motors are always preferred to dc motors
 - a) Squirrel cage rotors are simple and rugged in construction compared to the complex armature windings found on dc machines
 - b) Ac servo motors have no brush to commutator contacts
 - c) There is no insulation around the armature conductors as there is on a dc motor
 - d) Armature has no complicated insulated windings Any four points- 4 marks
 - **b)** Copper loss in rotor and stator, Iron loss, friction and windage loss Mention the parts 4 marks
 - c) Power measurement using two wattmeter method Diagram-3 marks Explanation- 3 marks Equations-2 marks

d) Principle of operation of DC potentiometer Diagram-2 marks Explanation-2 marks

8

9