

5							
		1	0001	1,9	-001		
		4	0100	4,6	01-0		
		8	1000	8,9	100-		
				8,10	10-0		
		6	0110				
		9	1001	6,7	011-	8,9,10,11	10--
		10	1010	9,11	10-1	8,9,10,11	10--
				10,11	101-		
		7	0111				
		11	1011	7,15	-111		
				11.15	1-11		
		15	1111				

Prime implicants: $B^{\prime} C^{\prime} D, A^{\prime} B D^{\prime}, A$ ' $B C, B C D, A C D, A B$ '

	1	4	6	7	8	9	10	11	15
$A B^{\prime}$			\bar{A}		X	X	X	X	
$B^{\prime} C^{\prime} D$	X					$A L$	X		
$A^{\prime} B D^{\prime}$		X	X						
$A^{\prime} B C$			X	X					
$B C D$				X					X
$A C D$								X	X
	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$		$\sqrt{2}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	

Essential Prime Implicants: $\mathrm{BCD}, \mathrm{A}^{\prime} \mathrm{BD}^{\prime}, \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}, \mathrm{AB}$
Minimized Boolean expression: $\mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BD}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{AB}{ }^{\prime}$

6	a)	Subtract (9F2C) $\mathbf{1 6}_{6}$ from (A96B) $)_{16}$ using 15's and 16's complement (Each method- 2 marks.) Answer :A3F 15 's complement of 9 F 2 C is $=60 \mathrm{D} 3$ $A 96 B+60 D 3=10 A 3 E \quad 0 A 3 E+1=0 A 3 F$ or $A 3 F$ 16 's complement of 9 F 2 C is $=60 \mathrm{D} 4$ $\mathrm{A} 96 \mathrm{~B}+60 \mathrm{D} 4=10 \mathrm{~A} 3 \mathrm{~F} \quad$ Answer is 0 A 3 F or A3F	thod			(4)
	b)	Subtract 366 from 170 in BCD using 10's complement addition. (BCD using 10's complement addition) 10's complement of $366=634$ Adding in BCD Since there is no carry the result is negative and is the complement of 000110010110 , that is -196 .	1000	0000	0100, ie. -	(3)

	c)	```Perform (417) \({ }_{8}\) - (232) \({ }_{8}\) using 8 's complement addition. (8's complement addition) 8's complement of \(\mathbf{2 3 2}\) 7's complement \(=777\)-232 \(=\mathbf{5 4 5}\) 8 's complement \(=\mathbf{5 4 5}+\mathbf{1}=546\) \((417)_{8}-(232)_{8}=417+546=1165\)```	(2)
7	a)	Using K-map simplify the Boolean function F as Sum of Products using the don't care conditions d. $\mathbf{F}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{w}^{\prime}\left(\mathbf{x}^{\prime} \mathbf{y}^{\mathbf{y}}+\mathbf{x}^{\prime} \mathbf{y}^{\prime}+\mathbf{x y z}\right)+\mathbf{x}^{\prime} \mathbf{z}^{\prime}(\mathbf{y}+\mathbf{w}) \mathbf{d}(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z})=\mathbf{w}^{\prime} \mathbf{x}\left(\mathbf{y}^{\prime} \mathbf{z}+\mathbf{y z}\right)+\mathbf{w y z}$ (K-map grouping - 2 marks simplification-2 marks) (Note: one minterm appears is the don'tcare also. The solution below is for both- with and without the don't care minterm included. Solution:- $w^{\prime} x^{\prime}+y z+x z^{\prime}$ Solution:- $w^{\prime} x^{\prime}+x$ ' z^{\prime}	(4)
	b)	Represent the following decimal numbers in signed 2's complement 8-bit numbers: i) +43 ii) -19 (i) $+43-1$ mark ii) $-19-2$ marks) (i) $+43=00101011$ ii) $-19=$ Binary equivalent of $19=00010011$ I's complement $=11101100$ 2's complement $=11101101$	(3)
	c)	Convert the decimal number 3.248×104 to IEEE 754 standard single precision floating point binary number. (IEEE 754 format- 2 mark Any other valid format-1 mark.) Single Precision frame format (32 bit)	(2)

		Clock Q_{0} Q_{1} Q_{2} Q_{3} $\rightarrow 0$ 0 0 0 0 1 1 0 0 0 2 1 1 0 0 3 1 1 1 0 4 1 1 1 1 5 0 1 1 1 6 0 0 1 1 7 0 0 0 1	
	b)	Compare Ring counter and Johnson counter. (Any 2 differences- 1 mark each)	(2)
16	a)	Explain the working of 3-bit Universal Shift Register. (Working of 3-bit Universal Shift Register-4 marks. Diagram- 4 marks) $\mathrm{N}=\mathrm{n}$ -	(8)

	b)	Parallel Output Bits $N=3$ In diagram 3 fliflops are only required. Function table Give 2 applications of shift register. (Any 2 applications of shift register- 1 mark each) 1. Time Delays 2. Serial /Parallel data conversion 3. Ring counter 4. Johnson Counter 5. Universal asynchronous receiver transmitter (UART) 6. Adder	(2)
17	a)	Design a combinational circuit using ROM that accepts a 3-bit binary number and generates output equal to the square of the input number. Use decoder of suitable size to implement ROM. (Truth table - 3 marks Rom using decoder - 4 marks)	(7)

	b)	What size of ROM would it take to implement i. A BCD adder/subtractor with a control input to select between the addition and subtraction. ii. A binary multiplier that multiplies two 4-bit numbers. iii. Dual 4 -line to 1 -line multiplexers with common selection inputs. (1 mark each) i)1024 $\times 5$ ii)256 $x 8$ iii) 1024×2	(3)
18	a)	Design a synchronous counter using JK flip-flops to count the sequence $\mathbf{0 , 5 , 6 , 7 , 3 , 2}$ and then repeats. (State table - 2 marks Design using K-map- 6 marks Diagram- 2 marks)	(10)

