\qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017Course Code: EE204

Course Name: DIGITAL ELECTRONICS AND LOGIC DESIGN (EE)

Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions; each question carries 5 marks

1. Perform each of the following conversions:
a) $(473)_{10}$ in to BCD code
b) BAD in to ASCII
c) $(289)_{10}$ in to hexadecimal
d) $(110011.110)_{2}$ in to decimal
e) $(53)_{8}$ in to hexadecimal
2. Simplify the following Boolean expression $\overline{A B}+\overline{A C}+\bar{A} \bar{B} \bar{C}$.
3. Design a half adder circuit and realize using NAND gates only.
4. Realise a JK flip flop using SR flip flop.
5. Draw the logical diagram of a 4 bit ring counter using D flip flop.
6. What are the asynchronous inputs of a flip flop and discuss its functions.
7. Compare static RAM and dynamic RAM.
8. Write the VHDL code for the implementation of a full adder circuit.

PART B

Answer any two questions; each question carries 10 marks
9. Perform arithmetic operation using 2 's complement method.
a) $-70-85$
b) $130-65$
10. Using a 4 variable K map, simplify,

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,4,9,10,11,12,14)+\mathrm{d}(0,8,13)
$$

Realize the function using NAND gates only.
11. a) Describe the operation of a basic parity generating and checking logical unit.
b) Compare the characteristics of TTL and CMOS logic families.

PART C

Answer any two questions; each question carries 10 marks

12. Design a MOD-12 asynchronous counter (ripple counter) using JK flip flop. Explain the working with truth table and timing diagram.
13. a) Draw the block diagram of a 4 bit ALU, and explain it, showing its inputs and outputs.
b) Design a BCD to decimal decoder.
14. What are fast adders? Design a 4 bit, carry look ahead adder, showing the logical diagram.

PART D
 Answer any two questions; each question carries 10 marks

15. Design a counter to obtain the count sequence $2,4,3,6,2,4,3,6 \ldots$ using JK flip flop.
16. a) Compare the Moore and Mealy state machine models.
b) Compare PAL and PLA.
17. With a neat block schematic, describe the working of a successive approximation ADC and illustrate it with a suitable example.
