(5)

(10)

Reg No.:	Name:	
	PJ ABDUL KALAM TECHNOLOGICAL UNIV TH SEMESTER B.TECH DEGREE EXAMINATIO	
	Course Code: CE403 Course Name: STRUCTURL ANALYSIS - 1	III
Max. Marks: 100		Duration: 3 Hours
	PART A	
	Answer any two full questions, each carries 15 m	narks. Marks
1 a) What are the	e assumptions in portal method of analysis?	(2)
b) Analyse the	frame shown in figure 1 using portal method	(13)
	20kN	
	4m	
	40kN	
	4m	
	40kN	
	5m	
	רלי 7.5m רלי די דאר דעלי	
	Fig 1	
2 a) Explain stat	ic, external and internal indeterminacy with example	es. (5)

a)	Explain static, external and internal indeterminacy with examples.
b)	Explain the concept of physical approach

- c) Define kinematic indeterminacy. Compute the kinematic indeterminacy of a rigid (5) jointed frame of column height 'h' and beam span 'l' with one end fixed and other end hinged, if only the beam axial deformations are neglected.
- 3 a) Compare the analysis by flexibility and stiffness matrix
 - b) Explain the formulae to find out the static indeterminacy of pin-jointed and rigid- (5) jointed frames

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain the load transformation matrix approach in flexibility method (8)
- b) Explain analysis of plane trusses by flexibility method (7)
- 5 a) Analyse the plane frame shown in figure 2 by flexibility matrix method and draw (15)

the SFD and BMD. The bottom support is fixed and top support is roller.

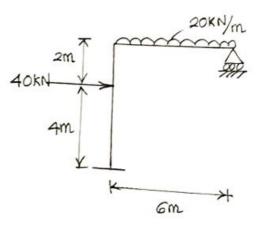


Fig 2

6 a) Define kinematic indeterminacy. Determine the kinematic indeterminacy of the (5) following structures in Fig 3.

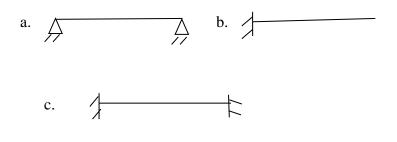


Fig.3

b) Analyse the truss shown in Fig. 4 (with active global coordinates, as shown) and (10) find the joint displacements, support reactions and bar forces. The truss is subjected to direct loads F1 = 50 kN; F2 = 30 kN, and a lack of fit due to bar AC being too long by 5 mm. Assume all bars to have same axial rigidity AE = 6000 kN. Use stiffness matrix method.

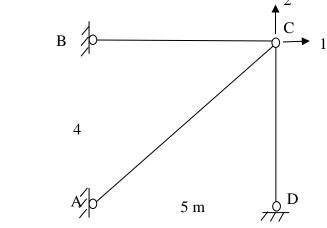


Fig 4

G1032

(5)

(5)

PART C Answer any two full questions, each carries 20 marks.

- 7 a) Discuss the procedure of Direct Stiffness Method in the matrix analysis
 - b) Analyse the continuous beam shown in figure 5 using Direct Stiffness Method (15) shown in figure and develop the BMD

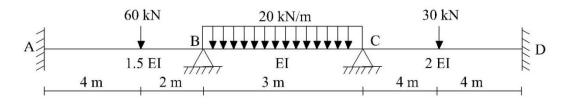


Fig 5

- 8 a) Explain Direct Stiffness Method in the matrix analysis
 - b) Analyse the beam shown in figure 6 using Direct Stiffness Method shown in figure (15) and determine the member forces and moments.

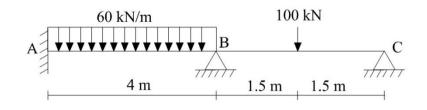


Fig 6

- 9 a) Write the equation of motions corresponding to the damped and undamped free and (5) forced vibration.
 - b) Derive the equations for response of SDOF system subjected to damped free (15) vibration in 'x' direction with inertia constant m, spring constant k and damping constant c. Draw the response diagram also.