Reg No.:		Name:					
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019					
		Course Code: CE306 Course Name: COMPUTER PROGRAMMING AND COMPUTATIONAL					
		TECHNIQUES					
Max	к. М	Duration: 3	Hours				
		PART A Answer any two full questions, each carries 15 marks.	Marks				
1	a)	Write short notes on usage of Preprocessor directives in C++	(4)				
	b)	What are manipulators in C++. Explain with suitable examples.	(4)				
	c)	Write a program to accept the height of a person in centimetres and convert and display the height in feet and inches	(7)				
2	a)	Explain in detail the use of <i>break</i> and <i>continue</i> statements in C++ with suitable examples.	(7)				
	b)	Write a program to read a 2D array of size m x n and prepare a 1 D array that will store all the elements of the 2D array as if they were stored in the row major form.	(8)				
		Sample: if the 2 D array is $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ the 1 D array having the elements of 2D					
		array in row major form is [1 2 3 4 5 6 7 8 9]					
3	a)	Explain any four string handling functions.	(8)				
	b)	Write a program to check whether a given character is a vowel, using switch	(7)				
		statement.					
		PART B Answer any two full questions, each carries 15 marks.					
4	a)	Explain the call by value and call by reference methods of function invoking.	(5)				
	b)	Write a program using functions to find the largest and smallest number in a 2D	(10)				
		array. Note: The function should accept the 2D array from the main function and					

5 a) Write and explain the general form of a structure definition, declaration & (7) initialisation with proper examples.

return the maximum and minimum number.

- b) Write a program (using structure) to read the details of m students in a class (8) including Roll no., name and marks of 3 subjects and print average mark of each student.
- 6 a) Explain the various file input and output streams commonly used in C++? (7)
 - b) Bring out the difference between procedure oriented programming and object (8) oriented programming

PART C

Answer any two full questions, each carries20 marks.

- 7 a) Using method of successive approximations find a real root of the equation (10) $x - sinx - \frac{1}{2} = 0$. For iteration the trial value of root may be taken as 1.0.
 - b) Develop a program to fit a straight line to a given set of coordinates. (10)
- a) The following table gives the results of the measurements of resistance felt by a (10) running train, where V the velocity of travel in km/hr and R is the resistance in kN.

V	20	40	60	80	100	120
R	5.5	9.1	14.9	22.8	33.3	46

Develop a 2^{nd} degree polynomial (parabola) relationship connecting *R* and *V* using the method of least squares.

- b) Write a program to perform numerical integration using Trapezoidal rule when (10) the function is tabulated as data points.
- 9 a) Solve the following simultaneous system of equations using Gauss elimination method. 3x₁ 0.1x₂ 0.2 x₃ = 7.85; (10)
 0.1 x₁ + 7 x₂ 0.3 x₃ = -19.3; 0.3 x₁ 0.2 x₂ + 10 x₃ = 71.4.
 - b) Demonstrate the finite difference method of numerical solution of partial (10) differential equations for the case of a Laplace equation given by $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$
