Reg	No.:_	Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
	TH	IRD SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019	
		Course Code: CS203	
		Course Name: SWITCHING THEORY AND LOGIC DESIGN	
Max	. Ma	rks: 100 Duration: 3 I	Hours
		PART A	
		Answer all questions, each carries3 marks.	Marks
1 2		Represent decimal number $(5.75)_{10}$ in single precision floating point format. Simplify the Boolean function F = AB' + AB + BC . Draw the circuit using basic gates. How many logic gates do you save by simplification?	(3) (3)
3		Show the three different representations for a negative decimal number $N = -25$ in binary.	(3)
4		Obtain the two canonical forms of the Boolean function F(A,B,C)= A'B+BC'+BC+AB'C'	(3)
		PART B	
		Answer any two full questions, each carries9 marks.	
5	a)	Simplify the given Boolean function using Karnaugh Map and obtain the minimum Sum Of Products expression. $F(WXYZ)=\Sigma(3,5,6,7)+d(10,11,12,13,14,15)$	(5)
	b)	Verify or contradict the statement "NAND logic function is commutative but not associative" using truth table.	(4)
6	a)	Convert the following numbers to binary and perform subtraction both 2's complement and 1's complement. 1)Minuend (3A) ₁₆ , subtrahend (24) ₁₆ 2)Minuend (24) ₁₆ , subtrahend (3A) ₁₆	(5)
	b)	Obtain the simplified Product of Sums expression for the function $F(ABC)=\pi(0,2,3,5,7)$ using Karnaugh Map.	(4)
7	a)	A keyboard contains 26 uppercase letters and 10 decimal digits as keys. The keys are arranged as a two-dimensional matrix. Each key should be identified by a unique binary code. Propose a suitable coding scheme for the keyboard layout. And write the code for letter H.	(5)
	b)	A digital circuit has four inputs and one output. The output is equal to 1 when (1) all the inputs are equal to 1 or (2) none of the inputs are equal to 1 or (3) an odd number of inputs are equal to 1 a) obtain the truth table b) Find the simplified output function in sum of products.	(4)
		PART C	
8		Answer all questions, each carries3 marks. What is the function of a half subtractor circuit? Write the logic expression for the outputs. Draw the logic diagram of half subtractor.	(3)
9		What is the advantage of edge triggering over level triggering in flipflops?	(3)
10		Draw the diagram of a JK latch using NOR gates. Explain the working of the latch when both J and K inputs are active simultaneously.	(3)
11		Draw the schematic diagram of a 3-bit parallel adder. What is the drawback of this circuit?	(3)

C192071

С

C192071

PART D

Answer any two full questions, each carries9 marks.

- What is a multiplexer? Draw the internal diagram of a 4X1 multiplexer, clearly 12 (4)a) indicating the inputs and outputs. Explain the functionality using the function table
 - Draw the circuit of a master slave JK flipflop. With the help of a timing diagram b) (5)explain its working.
- Implement the function $F(A,B,C)=\Sigma(0,1,4,6)$ using a 4X1 multiplexer. 13 a)
 - (5)What is meant by excitation table of a flip flop? Obtain the excitation table of b) (4) RS flipflop.
- Design a BCD to Excess-3 code convertor using a 4-bit parallel adder. 14 a) (5)
 - Draw the block diagram of a sequential circuit and differentiate synchronous b) (4) and asynchronous sequential circuits.

PART E

Answer any four full questions, each carries10 marks.

- With the help of timing diagram and logic diagram, explain the working of 15 (10)Serial In Serial Out shift register and Parallel In Serial Out shift register using an example.
- Draw the logic circuit of a BCD ripple Counter and explain its working with a 16 (10)timing diagram
- 17 Show the internal architecture of a 8X4 ROM. Show the implementation of a (10)full adder using ROM.
- 18 What is meant by a PLA? Show the implementation of F1=AB'C+AC+BC and (10)F2 = AC + BC + B'C using a suitable PLA.
- Design a synchronous counter using T flipflops having states 000-001-011-101-19 (10)110-111-000.
- What is meant by Hardware Description Languages? Give examples. Write the 20 (10)HDL code for a 4X1 multiplexer
