Reg No.:_____

Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN (EC, AE)

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer any two full questions, each carries 15 marks.	Marks					
a)	Convert the following numbers:	(4)					
	(a) $(101111.1101)_2$ to decimal (b) $(53.625)_{10}$ to binary						
b)	What is the specialty of Grey code and specify how this property can be utilized in a practical application						
c)	State the relationship between error detection ability, error correction ability and minimum distance of a code. An 8421 code is transmitted as Hamming code with even parity and the code received is 0011101. Determine the single error if any and correct it						
a) Obtain the minimal SOP expression for $\sum m(2,3,5,7,9,11,12,13,14,15)$ and							
	implement it using NAND logic						
b)	Using K-map, obtain the minimal sum of product of the following expression ABCD+AB'C'D'+AB'C+AB						
a)	Obtain binary representation of (-25)10 in (i) sign-magnitude (ii) 1's complement						
	(iii) 2's complement form						
b)	Derive expressions for the output of a 1-bit magnitude comparator and implement						
	it using gates						
	PART B						
	Answer any two full questions, each carries 15 marks.						
a)	Differentiate between PLA and PAL with necessary diagrams						
b)	What is the significance of (a) propagation delay (b) power dissipation (c) Fan-out						
	of gates. Compare CMOS, ECL and TTL logic families in terms of these						
	parameters						

- 5 a) What is race-around condition in flip-flops? How is it solved? (5)
 - b) Design a mod-6 synchronous counter using T-flip-flops (10)

1

2

3

4

C1150

6	a)	Draw the circuit of a TTL N	AND gate	with totem	pole outp	ut. Mention the	(7)			
		advantages and disadvantages of totem pole configuration								
	b)	Realize a J K flip-flop using D flip-flops								
PART C Answer any two full questions, each carries20 marks.										
7	a)	Draw a serial input parallel ou	el output (4 bit) shift register. Convert this to a ring							
		counter using suitable modifications								
	b)	Draw the block diagram of a fi	the block diagram of a finite state machine. Differentiate between Mealy (1							
		and Moore machine with the help of block diagrams								
8	a)	Design a 2 bit synchronous up/c	lown counte	wn counter using D flip-flop						
	b)	Reduce the following state table using implication chart method								
			PS	NS, z						
				X=0	X=1					
			S0	S4, 0	S3, 1					
			S1	S5, 0	S3, 0					
			S2	S4, 0	S1, 1					
			S3	S5, 0	S1, 0					
			S4	S2, 0	S5, 1					

9 a) A clocked sequential circuit with single input X and single output Y produces (10) output Z equal to 1, whenever the input X completes the sequence 110 and overlap is allowed. Obtain the state diagram and the minimum state table.
Prepare excitation table and design the circuit using D flip-flop.

S1, 0

S2, 0

S5

b) List different classes of shift registers. Illustrate the use of the use of parallel (10)
 LOAD/SHIFT in shift registers
