A1103 Pages 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Scheme for Valuation/Answer Key

Scheme of evaluation (marks in brackets) and answers of problems/key

FIRST/SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2019

Course Code: PH100

Course Name: ENGINEERING PHYSICS

Max. N	Marks: 100 Duration: 3	Hours
	PART A Answer all questions, each carries 2 marks.	Marks
1	Frequency decreases 1 mark, Time period increases -1 mark	(2)
2	Transverse waves -1 mark, Longitudinal waves -1 mark – Two points for each	(2)
3	Coherent sources- Constant phase relationship between waves – 1 mark	(2)
	Same frequency and same wavelength -1 mark	
4	Grating element - 1 mark; grating equation in terms of grating element- 1 mark	(2)
5	Explanation with formula – 2 marks	(2)
6	Two examples for Type-I and Type-II superconductors- 1mark for each type	(2)
7	Proper description of Tunnel effect -2 marks	(2)
8	Symmetric wave function for Bosons-1 mark;	(2)
	Anti symmetric wave function for fermions – 1 mark	
9	Any two Differences between echo and reverberation -1 mark for each.	(2)
10	Magnetostriction effect -1.5 marks, Write one application -0.5 mark	(2)
11	Mention any 4 advantages of semiconductor laser -2 marks	(2)
12	Photovoltaic effect -2 marks	(2)
	PART B	
	Answer any 10 questions, each carries 4 marks.	
13	What is Resonance -1 mark, expression for amplitude -1 mark, derivation of resonant frequency—2 marks	(4)
14	1 mark for each value, (Ans:- A = $3x10^{-3}$ V/m, f = $1.33 x10^{13}$ Hz, $\lambda = 2.24 x10^{-5}$ m,v = $2.9 x 10^{8}$ m/s)	(4)
15	If k and ω are identified but f and λ are not calculated -1/2 mark for each Construction and working - 3 marks, figure- 1 mark.	(4)
16	Distance between central maximum and first minimum $x = f \lambda / a - 1 \text{mark}$;	(4)
	Correct substitution - 2 marks Answer with proper unit- 1 mark. (Answer: λ =5000 A°)	()
17	Equations for thickness of QWP & HWP -1 mark each, Proof- 2 marks	(4)
18	Proper explanation of Superconductivity-2 marks,	(4)
	Definition for transition temperature-1 mark, critical mag.field-1mark,	
19	Formula-: $\lambda = h/\sqrt{(2mE)}$ - 1mark , Substitution – 2marks [E=100x1.6x10 ⁻¹⁹ J]:	(4)
	Answer with unit ($\lambda = 1.22 \times 10^{-10} \text{ m}$) – 1 mark	

A1103		Pages 2
20	Explanation of Fermi level- 2 marks, Significance- 2 marks	(4)
21	Eqn.T=0.163V/A -1mark (A= $\Sigma Sx\alpha$), finding $\Sigma S=1720m^2$ 1 mark,	(4)
	substitution—1 mark, Ans. $\alpha = 0.0947$ OWUm ⁻² or sabine m ⁻² —1mark	
22	. Equation - 1 mark $[f=1/(2\pi\sqrt{LC})]$, Substitution & calculation - 2 marks	(4)
	Answer with unit - 1 mark [0.025 pF]	
23	Two points for each - 4 marks	(4)
24	Block diagram -2 marks, Brief explanation of each part - 2 marks	(4)
	PART C	
	Answer any three questions, each carries 6 marks.	
25	Differential equation- 1mark; Derivation of general solution-2marks Time- displacement curve with conditions for 3 cases3 marks.	(6)
26	Figure and explanation -2 marks, derivation of expression for β -2 marks, expression for t -1 mark, experiment to find thickness -1 mark	(6)
27	Describe production of elliptically polarized light(Production of plane polarised	(6)
	light, Use of QWP, Angle \(\neq 45^\circ\) -4marks, Detection(Nicol prism & QWP)- 2marks	
28	Figure with explanation -1 mark,1-DSchrodinger equation for the particle-1 mark	(6)
	$k^2 = 2mE/\hbar^2 - 1/2 \text{ mark}$	
	General solution $\psi = A \sin kx + B \cos kx - 1 \text{ mark (or } Ae^{ikx} + Be^{-ikx})$	
	Applying boundary conditions and obtaining $\psi = A \sin kL$ 1 mark	
	Equation $kL = n\pi$ or $k^2 = n^2\pi^2/L^2$ 1/2 mark	
	Equating the two values of k^2 and obtaining Equation $E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$ 1 mark	
	PART D	
	Answer any three questions, each carries 6 marks.	
29	Definition for intensity of sound- 2 marks, expression- 1 mark.	(6)
	Definition for threshold of hearing intensity and its value-1.5marks	
	Definition for threshold of pain intensity and its value-1.5marks	
30	Inverse piezoelectric effect - 2 marks, Circuit diagram - 1mark	(6)
	working with two equations for frequency - 3 marks	
31	Figure- 1 mark, construction(explanation of basic components) -2 marks,	(6)
	energy level diagram-1 mark, working(proper explanation of transitions)-2 marks	
32	Explanation of principle(TIR with conditions) -2 marks,	(6)
	Step index fibre -1 mark, Graded index fibre - 1mark, Two advantages -2 marks.	
