R3946

Reg	No.:	Name:	
	Т	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY HIRD SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018	
		Course Code: CS205	
		Course Name: DATA STRUCTURES (CS,IT)	
Max	Max. Marks: 100 Duration: 3		3 Hours
		PART A	
		Answer all questions, each carries 3 marks.	Marks
1		Write a recursive function to find the fibonacci series	(3)
2		Draw a circular doubly linked list. Give an advantage of circular doubly linked list.	(3)
3		Check whether the following is true or not. 2^{n+1} is in O(2 ⁿ). Give reason.	(3)
4		How will you represent a polynomial $3x^2 + 2xy^2 + 5y^3 + 7yz$ using singly linked list?	(3)
		PART B	
		Answer any two full questions, each carries 9 marks.	
5	a)	Explain the Big O asymptotic notation used for specifying the growth rate of functions.	(3)
	b)	Given a doubly linked list, write an algorithm that removes a node with a particular value from the list and inserts it in the front.	(6)
6	a)	What is an algorithm? How is its complexity analysed?	(3)
	b)	What is the complexity of finding maximum and minimum value from an array of n values? Explain the steps of deriving complexity.	(6)
7	a)	Give any three applications of linked list.	(3)
	b)	Let L1 be a singly linked list in memory. Write an algorithm i) Finds the number of non zero elements in L1 ii) Adds a given value K to each element in L1	(6)
		PART C	
		Answer all questions, each carries 3 marks.	
8		Write an algorithm to find a substring in a given string.	(3)
9		With the help of an example, explain how a binary tree can be represented using an array.	(3)
10		How can you reverse a string using stack? Give one example and show how you can reverse a given string using stack.	(3)
11		Write a recursive algorithm for pre-order traversal in a binary tree.	(3)

R3946

(6)

PART D

Answer any two full questions, each carries 9 marks.

12	a)	Illustrate the result of each operation in the sequence PUSH(S,4),	(3)
		PUSH(S,1), PUSH(S,3), POP(S), PUSH(S,8) and POP(S) on an initially	
		empty stack S stored in array S[16]	
	b)	Write an algorithm to insert an element into a binary search tree.	(6)

- 13 a) Convert the following infix expression into prefix expression (3) (A-B/C) * (D*E-F)
 - b) Write an algorithm to evaluate a postfix expression.
- 14 a) In a complete binary tree of depth d (complete including last level), give an (3) expression to find the number of leaf nodes in the binary tree.
 - b) Given five memory partitions of 300Kb, 700Kb, 400Kb, 500Kb, 800Kb (in (6) order), how would the first-fit, best-fit, and worst-fit algorithms place processes of 412 Kb, 617 Kb, 112 Kb, and 626 Kb (in order)?

PART E

Answer any four full questions, each carries 10 marks.

15	a)	What are the characteristics of a good hash function?	(4)
	b)	Demonstrate the insertion of the keys 5, 28, 15, 20, 33, 12, 17, 32 into a	(6)
		hash table with collisions resolved by linear probing. Let the table have 9	
		slots, with the starting index 0. Let the hash function be $h(k) = k \mod 9$	
16	a)	Give the heap sort algorithm. Write the complexity of your algorithm.	(4)
	b)	Using the above heap sort algorithm sort the input file [35 15 40 1 60].	(6)
17	a)	What is Primary Clustering?	(4)
	b)	Given input keys {1, 3, 23, 9, 4, 29, 19} and a hash function	(6)
		$h(X) = X \mod tablesize$. The initial hash table contains 10 slots, with	
		starting index 0. Show the resulting table after rehashing when the load	
		factor= 0.5, using linear probing	
18	a)	Give a non recursive algorithm for binary search.	(4)
	b)	Suppose an array contains elements {10, 13, 21, 32, 35, 44, 55}. Give the	(6)
		steps to find an element "35" using i) linear search ii) binary search	
19	a)	Give two different types of representation for graphs.	(4)
	b)	Write a procedure to do DFS in a graph.	(6)
20	a)	Write an algorithm to perform selection sort in an array.	(4)
	b)	Using the above selection sort algorithm, sort the input file	(6)
		[25, 7, 46, 11, 85].	
