B4B0072

Total Pages: 2

Duration: 3 Hours

Reg No.:_____

Name:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FOURTH SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017

Course Code: CS202

Course Name: COMPUTER ORGANISATION AND ARCHITECTURE (CS, IT)

Max. Marks: 100

PART A

Answer all questions. Each carries 3 marks.

1	Differentiate between big-endian and little-endian byte assignments.	(3)
2	Design a 2x2 array multiplier.	(3)
3	Describe auto increment addressing mode with the help of an example.	(3)
4	Give the control sequence for execution of instruction Add[R2],R1 using a	(3)
	single bus organization.	

PART B Answer any two questions. Each carries 9 marks.

5	a)	Describe, with proper examples, the role of processor stack in subroutine call and return.	(5)
	b)	Draw the flowchart for decimal multiplication.	(4)
6	a)	Explain restoring method of division with the help of a flow chart.	(5)
	b)	Write notes on three address, two address and one address instructions, giving example for each.	(4)
7	a)	Explain single bus organization with the help of a diagram. Specify with examples, how memory operations are done in the given organization.	(5)
	b)	Describe any 4 addressing modes with examples.	(4)

PART C

Answer all questions. Each carries 3 marks.

11	Describe centralized bus arbitration.	(3)		
10	Briefly explain the LRU cache replacement algorithm	(3)		
9	Write notes on flash memory.	(3)		
8	What are vectored interrupts?	(3)		

PART D

Answer any two questions. Each carries 9 marks.

12	a)	Explain the architecture of USB with a diagram. What do you mean by split	(5)
		bus operation in USB?	
	b)	Write notes on static memories.	(4)

b) Write notes on static memories.

B4B0072

13	a)	Differentiate between associative and set associative cache mapping with	(5)
	1.)	examples.	(\mathbf{A})
	b)	Write notes on interrupt nesting. Explain how simultaneous interrupt requests can be handled.	(4)
14	a)	Discuss about the different types of Read only memories.	(4)
	b)	Explain with the help of timing diagrams, the input and output data transfers in an asynchronous bus.	(5)
		PART E	
		Answer any four questions. Each carries 10 marks.	

15	a)	Design a bus system for interconnecting four n bit registers	(5)
	b)	Design a 4bit combinational logic shifter	(5)
16	a)	Briefly explain, with diagrams, the different methods for control organization	(5)
	b)	Write notes on microprogrammed CPU organisation.	(5)
17	a)	Design an adder/subtractor circuit with one selection variable s and two inputs	(5)
		A and B. When s=0, the circuit performs A+B and when s=1 it performs A-B,	
		by taking 2's complement of B.	
	b)	Write notes on status register.	(5)
18	a)	Describe the different ways in which a general-purpose processor unit can be	(6)
		organized.	
	b)	Write notes on conditional control statements.	(4)
19		Explain with the help of a diagram, the working of microprogram sequencer.	(10)
20		Describe the steps in control logic design with the help of an example.	(10)
		(Example can be realised using either hardwired or microprogrammed control	
		organization.)	

В